- -

Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada

Mostrar el registro completo del ítem

Diaz-Cano, I.; Quintana, FM.; Galindo, PL.; Morgado-Estevez, A. (2022). Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada. Revista Iberoamericana de Automática e Informática industrial. 19(2):154-163. https://doi.org/10.4995/riai.2021.16054

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182821

Ficheros en el ítem

Metadatos del ítem

Título: Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada
Otro titulo: Eye-to-hand calibration of an industrial robotic arm with structured light 3D cameras
Autor: Diaz-Cano, Ignacio Quintana, Fernando M. Galindo, Pedro L. Morgado-Estevez, Arturo
Fecha difusión:
Resumen:
[EN] Computer vision is gaining more and more importance in the world of industrial robotics, since it is necessary to carry out increasingly precise and autonomous tasks, which is why a more exact positioning of the robot ...[+]


[ES] La visión artificial está cobrando cada día más auge en el mundo de la robótica industrial, ya que es necesario realizar tareas cada vez más precisas y autónomas, por lo que se necesita un posicionamiento del robot ...[+]
Palabras clave: Hand-eye calibration , Industrial robotics , Computer vision applied to robotics , Autonomous robotic systems , Calibración ojo a mano , Robótica industrial , Visión por computador aplicada a la robótica , Sistemas robóticos autónomos
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2021.16054
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2021.16054
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/EQC2018-005190-P
info:eu-repo/grantAgreement/MICIU//FPU18/04321
Agradecimientos:
Este trabajo ha sido realizado parcialmente gracias al apoyo del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (AUROVI) EQC2018-005190-P. Fernando M. Quintana agradece al Ministerio de ...[+]
Tipo: Artículo

References

Ali, I., Suominen, O., Gotchev, A., Morales, E. R., jun 2019. Methods for simultaneous robot-world-hand-eye calibration: A comparative study. Sensors (Switzerland) 19 (12), 2837. https://doi.org/10.3390/s19122837

Cui, H., Sun, R., Fang, Z., Lou, H., Tian, W., Liao, W., 2020. A novel flexible two-step method for eye-to-hand calibration for robot assembly system. Measurement and Control 53 (9-10), 2020-2029. https://doi.org/10.1177/0020294020964842

de Klerk, E., 2002. Aspects of semidefinite programming interior point algorithms and selected applications. Applied Optimization. https://doi.org/10.1007/b105286 [+]
Ali, I., Suominen, O., Gotchev, A., Morales, E. R., jun 2019. Methods for simultaneous robot-world-hand-eye calibration: A comparative study. Sensors (Switzerland) 19 (12), 2837. https://doi.org/10.3390/s19122837

Cui, H., Sun, R., Fang, Z., Lou, H., Tian, W., Liao, W., 2020. A novel flexible two-step method for eye-to-hand calibration for robot assembly system. Measurement and Control 53 (9-10), 2020-2029. https://doi.org/10.1177/0020294020964842

de Klerk, E., 2002. Aspects of semidefinite programming interior point algorithms and selected applications. Applied Optimization. https://doi.org/10.1007/b105286

Derpanis, K. G., 2010. Overview of the RANSAC Algorithm. Tech. rep., EECS.

Dias, J., de Almeida, A., Araujo, H., Batista, J., 1991. Improving camera calibration by using multiple frames in hand-eye robotic systems. https://doi.org/10.1109/IROS.1991.174464

Eriksson, T., Hansen, H. N., Gegeckaite, A., 2008. On the use of industrial robots in microfactories. The International Journal of Advanced Manufacturing Technology 38 (5), 479-486. https://doi.org/10.1007/s00170-007-1116-7

Featherstone, R., 2007. Robot dynamics algorithms . https://doi.org/10.1007/978-1-4899-7560-7

Fischler, M., Bolles, R., 1981. https://doi.org/10.1145/358669.358692

Hu, J.-S., Chang, Y.-J., 2013. Automatic Calibration of Hand-Eye-Workspace and Camera Using Hand-Mounted Line Laser. https://doi.org/10.1109/TMECH.2012.2212717

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A., 2011. Kinect- Fusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In: UIST '11 Proceedings of the 24th annual ACM symposium on User interface software and technology, uist '11 proceedings of the 24th annual acm symposium on user interface software and technology Edition. ACM, pp. 559-568. https://doi.org/10.1145/2047196.2047270

Koide, K., Menegatti, E., 2019. General Hand-Eye Calibration Based on Reprojection Error Minimization. https://doi.org/10.1109/LRA.2019.2893612

Lasi, H., Kemper, H.-G., Feld, D.-I. T., Homann, D.-H. M., 2014. Industry 4.0. Business & Information Systems Engineering 4, 239-242. https://doi.org/10.1007/s12599-014-0334-4

Li, W., Dong, M., Lu, N., Lou, X., Sun, P., 2018. Simultaneous Robot-World and Hand-Eye Calibration without a Calibration Object. https://doi.org/10.3390/s18113949

Liu, X., Madhusudanan, H., Chen, W., Li, D., Ge, J., Ru, C., Sun, Y., 2021. Fast eye-in-hand 3-d scanner-robot calibration for low stitching errors. IEEE Transactions on Industrial Electronics 68 (9), 8422-8432. https://doi.org/10.1109/TIE.2020.3009568

Low, K.-L., 2004. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration. Tech. rep., University of North Carolina.

Lu, Y., jun 2017. Industry 4.0: A survey on technologies, applications and open research issues. https://doi.org/10.1016/j.jii.2017.04.005

Lundberg, I., Bjorkman, M., Ogren, P., 2014. Intrinsic camera and hand-eye calibration for a robot vision system using a point marker. https://doi.org/10.1109/HUMANOIDS.2014.7041338

Magnenat-Thalmann, N., 2020. Preface the Visual Computer (vol 36 issues 10-12). https://doi.org/10.1007/s00371-020-01965-8

Munchen, T. U., 2009. HandEyeCalibration. URL: http://campar.in.tum.de/Chair/HandEyeCalibration

Newcombe, R. A., Fitzgibbon, A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges, S., 2011. KinectFusion: Real-time dense surface mapping and tracking. https://doi.org/10.1109/ISMAR.2011.6092378

Pachtrachai, K., Vasconcelos, F., Chadebecq, F., Allan, M., Hailes, S., Pawar, V., Stoyanov, D., 2018. Adjoint Transformation Algorithm for Hand-Eye Calibration with Applications in Robotic Assisted Surgery. https://doi.org/10.1007/s10439-018-2097-4

Pham, B. T., Tien Bui, D., Prakash, I., 2018. Bagging based Support Vector Machines for spatial prediction of landslides. https://doi.org/10.1007/s12665-018-7268-y

Rusinkiewicz, S., Levoy, M., 2001. Ecient variants of the ICP algorithm. Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 145-152. https://doi.org/10.1109/IM.2001.924423

Shiu, Y. C., Ahmad, S., 1989. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB . https://doi.org/10.1109/70.88014

Sorkine-Hornung, O., Rabinovich, M., 2017. Least-Squares Rigid Motion Using SVD. Tech. rep., Department of Computer Science, ETH Zurich. URL: http://www.igl.ethz.ch/projects/ARAP/

Taryudi, Wang, M.-S., 2018. Eye to hand calibration using ANFIS for stereo vision-based object manipulation system. https://doi.org/10.1109/ICASI.2017.7988217

Toan, N. V., Khoi, P. B., 2018. A svd-least-square algorithm for manipulator kinematic calibration based on the product of exponentials formula †. Journal of Mechanical Science and Technology 32 (11), 5401-5409. https://doi.org/10.1007/s12206-018-1038-3

Tsai, R. Y., Lenz, R. K., 1989. A New Technique for Fully Autonomous and Effient 3D Robotics Hand/Eye Calibration. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 5 (3). https://doi.org/10.1109/70.34770

Uhlig, F., 1992. Review of topics in matrix analysis. https://doi.org/10.1016/0024-3795(92)90075-L

Wang, Z., Fan, J., Jing, F., Deng, S., Zheng, M., Tan, M., 2020. An efficient Calibration Method of Line Structured Light Vision Sensor in Robotic Eyein- Hand System. https://doi.org/10.1109/JSEN.2020.2975538

Werner, D., Al-Hamadi, A., Werner, P., 2014. Truncated Signed Distance Function: Experiments on Voxel Size. https://doi.org/10.1007/978-3-319-11755-3_40

Xu, F., Fan, S., Yang, Q., Zhang, C.,Wang, Y., 2019.Welding robotic hand-eye calibration method based on structured light plane. https://doi.org/10.23919/ChiCC.2019.8865169

Yang, M. Y., F¨orstner, W., 2010. Plane Detection in Point Cloud Data. Tech. rep., Department of Photogrammetry Institute of Geodesy and Geoinformation University of Bonn. URL: http://www.ipb.uni-bonn.de/technicalreports/

Zhang, Z., Zhang, L., Yang, G.-Z., 2017. A computationally ecient method for hand-eye calibration. https://doi.org/10.1007/s11548-017-1646-x

Zhao, Z., Liu, Y., 2009. A hand-eye calibration algorithm based on screw motions. https://doi.org/10.1017/S0263574708004608

Zou, Y., Chen, X., 2018. Hand-eye calibration of arc welding robot and laser vision sensor through semidefinite programming. https://doi.org/10.1108/IR-02-2018-0034

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem