- -

Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Diaz-Cano, Ignacio es_ES
dc.contributor.author Quintana, Fernando M. es_ES
dc.contributor.author Galindo, Pedro L. es_ES
dc.contributor.author Morgado-Estevez, Arturo es_ES
dc.date.accessioned 2022-05-24T07:38:51Z
dc.date.available 2022-05-24T07:38:51Z
dc.date.issued 2022-04-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/182821
dc.description.abstract [EN] Computer vision is gaining more and more importance in the world of industrial robotics, since it is necessary to carry out increasingly precise and autonomous tasks, which is why a more exact positioning of the robot is needed. This requires the support of a vision system that is the one that gives the robot precision in its pose, calibrating said system with respect to the robot. This work presents a simple methodology to approach this form of calibration, called hand-eye, using a structured light 3D camera that obtains information from the real world and a six-axis industrial robotic arm. The method uses the RANSAC algorithm for the determination of the planes, which represents a notable reduction in errors, since the coordinates of the points sought come from planes adjusted to thousands of points. This allows the system to always have the ability to obtain a transformation matrix from the coordinates of the camera to the base of the robot. In addition, the proposed method is ideal for making a precision comparison between cameras, due to its simplicity and speed of use. In this study, the resulting error analysis was performed using two dfferent 3D cameras: a basic one (Kinect 360) and an industrial one (Zivid ONE + M). es_ES
dc.description.abstract [ES] La visión artificial está cobrando cada día más auge en el mundo de la robótica industrial, ya que es necesario realizar tareas cada vez más precisas y autónomas, por lo que se necesita un posicionamiento del robot más exacto. Para ello se precisa del apoyo de un sistema de visión que sea el que preste al robot precisión en su pose, calibrando dicho sistema con respecto al robot. Este trabajo presenta una metodología sencilla para abordar esta forma de calibración, llamada ojo a mano, empleando una cámara 3D de luz estructurada que obtiene la información del mundo real y un brazo robótico industrial de seis ejes. Esto permite utilizar el algoritmo RANSAC para la determinación de los planos, cuya intersección nos da las coordenadas de los puntos,lo que supone una reducción notable de los errores, ya que las coordenadas proceden de planos ajustados a miles de puntos, lo cual hace que el sistema sea más robusto y capaz de obtener una matriz de transformación de las coordenadas de la cámara a la base del robot, que le permitirá abordar cualquier tarea que precise con una precisión eficiente. Se ha realizado el análisis de errores resultante utilizando dos cámaras 3D diferentes: una básica (Kinect 360) y otra industrial (Zivid ONE+ M). es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (AUROVI) EQC2018-005190-P. Fernando M. Quintana agradece al Ministerio de Ciencia, Innovación y Universidades de España su apoyo a través de la ayuda FPU (FPU18/04321). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Hand-eye calibration es_ES
dc.subject Industrial robotics es_ES
dc.subject Computer vision applied to robotics es_ES
dc.subject Autonomous robotic systems es_ES
dc.subject Calibración ojo a mano es_ES
dc.subject Robótica industrial es_ES
dc.subject Visión por computador aplicada a la robótica es_ES
dc.subject Sistemas robóticos autónomos es_ES
dc.title Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada es_ES
dc.title.alternative Eye-to-hand calibration of an industrial robotic arm with structured light 3D cameras es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.16054
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/EQC2018-005190-P es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICIU//FPU18/04321 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Diaz-Cano, I.; Quintana, FM.; Galindo, PL.; Morgado-Estevez, A. (2022). Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada. Revista Iberoamericana de Automática e Informática industrial. 19(2):154-163. https://doi.org/10.4995/riai.2021.16054 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.16054 es_ES
dc.description.upvformatpinicio 154 es_ES
dc.description.upvformatpfin 163 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16054 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Ali, I., Suominen, O., Gotchev, A., Morales, E. R., jun 2019. Methods for simultaneous robot-world-hand-eye calibration: A comparative study. Sensors (Switzerland) 19 (12), 2837. https://doi.org/10.3390/s19122837 es_ES
dc.description.references Cui, H., Sun, R., Fang, Z., Lou, H., Tian, W., Liao, W., 2020. A novel flexible two-step method for eye-to-hand calibration for robot assembly system. Measurement and Control 53 (9-10), 2020-2029. https://doi.org/10.1177/0020294020964842 es_ES
dc.description.references de Klerk, E., 2002. Aspects of semidefinite programming interior point algorithms and selected applications. Applied Optimization. https://doi.org/10.1007/b105286 es_ES
dc.description.references Derpanis, K. G., 2010. Overview of the RANSAC Algorithm. Tech. rep., EECS. es_ES
dc.description.references Dias, J., de Almeida, A., Araujo, H., Batista, J., 1991. Improving camera calibration by using multiple frames in hand-eye robotic systems. https://doi.org/10.1109/IROS.1991.174464 es_ES
dc.description.references Eriksson, T., Hansen, H. N., Gegeckaite, A., 2008. On the use of industrial robots in microfactories. The International Journal of Advanced Manufacturing Technology 38 (5), 479-486. https://doi.org/10.1007/s00170-007-1116-7 es_ES
dc.description.references Featherstone, R., 2007. Robot dynamics algorithms . https://doi.org/10.1007/978-1-4899-7560-7 es_ES
dc.description.references Fischler, M., Bolles, R., 1981. https://doi.org/10.1145/358669.358692 es_ES
dc.description.references Hu, J.-S., Chang, Y.-J., 2013. Automatic Calibration of Hand-Eye-Workspace and Camera Using Hand-Mounted Line Laser. https://doi.org/10.1109/TMECH.2012.2212717 es_ES
dc.description.references Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A., 2011. Kinect- Fusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In: UIST '11 Proceedings of the 24th annual ACM symposium on User interface software and technology, uist '11 proceedings of the 24th annual acm symposium on user interface software and technology Edition. ACM, pp. 559-568. https://doi.org/10.1145/2047196.2047270 es_ES
dc.description.references Koide, K., Menegatti, E., 2019. General Hand-Eye Calibration Based on Reprojection Error Minimization. https://doi.org/10.1109/LRA.2019.2893612 es_ES
dc.description.references Lasi, H., Kemper, H.-G., Feld, D.-I. T., Homann, D.-H. M., 2014. Industry 4.0. Business & Information Systems Engineering 4, 239-242. https://doi.org/10.1007/s12599-014-0334-4 es_ES
dc.description.references Li, W., Dong, M., Lu, N., Lou, X., Sun, P., 2018. Simultaneous Robot-World and Hand-Eye Calibration without a Calibration Object. https://doi.org/10.3390/s18113949 es_ES
dc.description.references Liu, X., Madhusudanan, H., Chen, W., Li, D., Ge, J., Ru, C., Sun, Y., 2021. Fast eye-in-hand 3-d scanner-robot calibration for low stitching errors. IEEE Transactions on Industrial Electronics 68 (9), 8422-8432. https://doi.org/10.1109/TIE.2020.3009568 es_ES
dc.description.references Low, K.-L., 2004. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration. Tech. rep., University of North Carolina. es_ES
dc.description.references Lu, Y., jun 2017. Industry 4.0: A survey on technologies, applications and open research issues. https://doi.org/10.1016/j.jii.2017.04.005 es_ES
dc.description.references Lundberg, I., Bjorkman, M., Ogren, P., 2014. Intrinsic camera and hand-eye calibration for a robot vision system using a point marker. https://doi.org/10.1109/HUMANOIDS.2014.7041338 es_ES
dc.description.references Magnenat-Thalmann, N., 2020. Preface the Visual Computer (vol 36 issues 10-12). https://doi.org/10.1007/s00371-020-01965-8 es_ES
dc.description.references Munchen, T. U., 2009. HandEyeCalibration. URL: http://campar.in.tum.de/Chair/HandEyeCalibration es_ES
dc.description.references Newcombe, R. A., Fitzgibbon, A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges, S., 2011. KinectFusion: Real-time dense surface mapping and tracking. https://doi.org/10.1109/ISMAR.2011.6092378 es_ES
dc.description.references Pachtrachai, K., Vasconcelos, F., Chadebecq, F., Allan, M., Hailes, S., Pawar, V., Stoyanov, D., 2018. Adjoint Transformation Algorithm for Hand-Eye Calibration with Applications in Robotic Assisted Surgery. https://doi.org/10.1007/s10439-018-2097-4 es_ES
dc.description.references Pham, B. T., Tien Bui, D., Prakash, I., 2018. Bagging based Support Vector Machines for spatial prediction of landslides. https://doi.org/10.1007/s12665-018-7268-y es_ES
dc.description.references Rusinkiewicz, S., Levoy, M., 2001. Ecient variants of the ICP algorithm. Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 145-152. https://doi.org/10.1109/IM.2001.924423 es_ES
dc.description.references Shiu, Y. C., Ahmad, S., 1989. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB . https://doi.org/10.1109/70.88014 es_ES
dc.description.references Sorkine-Hornung, O., Rabinovich, M., 2017. Least-Squares Rigid Motion Using SVD. Tech. rep., Department of Computer Science, ETH Zurich. URL: http://www.igl.ethz.ch/projects/ARAP/ es_ES
dc.description.references Taryudi, Wang, M.-S., 2018. Eye to hand calibration using ANFIS for stereo vision-based object manipulation system. https://doi.org/10.1109/ICASI.2017.7988217 es_ES
dc.description.references Toan, N. V., Khoi, P. B., 2018. A svd-least-square algorithm for manipulator kinematic calibration based on the product of exponentials formula †. Journal of Mechanical Science and Technology 32 (11), 5401-5409. https://doi.org/10.1007/s12206-018-1038-3 es_ES
dc.description.references Tsai, R. Y., Lenz, R. K., 1989. A New Technique for Fully Autonomous and Effient 3D Robotics Hand/Eye Calibration. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 5 (3). https://doi.org/10.1109/70.34770 es_ES
dc.description.references Uhlig, F., 1992. Review of topics in matrix analysis. https://doi.org/10.1016/0024-3795(92)90075-L es_ES
dc.description.references Wang, Z., Fan, J., Jing, F., Deng, S., Zheng, M., Tan, M., 2020. An efficient Calibration Method of Line Structured Light Vision Sensor in Robotic Eyein- Hand System. https://doi.org/10.1109/JSEN.2020.2975538 es_ES
dc.description.references Werner, D., Al-Hamadi, A., Werner, P., 2014. Truncated Signed Distance Function: Experiments on Voxel Size. https://doi.org/10.1007/978-3-319-11755-3_40 es_ES
dc.description.references Xu, F., Fan, S., Yang, Q., Zhang, C.,Wang, Y., 2019.Welding robotic hand-eye calibration method based on structured light plane. https://doi.org/10.23919/ChiCC.2019.8865169 es_ES
dc.description.references Yang, M. Y., F¨orstner, W., 2010. Plane Detection in Point Cloud Data. Tech. rep., Department of Photogrammetry Institute of Geodesy and Geoinformation University of Bonn. URL: http://www.ipb.uni-bonn.de/technicalreports/ es_ES
dc.description.references Zhang, Z., Zhang, L., Yang, G.-Z., 2017. A computationally ecient method for hand-eye calibration. https://doi.org/10.1007/s11548-017-1646-x es_ES
dc.description.references Zhao, Z., Liu, Y., 2009. A hand-eye calibration algorithm based on screw motions. https://doi.org/10.1017/S0263574708004608 es_ES
dc.description.references Zou, Y., Chen, X., 2018. Hand-eye calibration of arc welding robot and laser vision sensor through semidefinite programming. https://doi.org/10.1108/IR-02-2018-0034 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem