Stangland EE (2018) Shale gas implications for C2–C3 olefin production: incumbent and future technology. Annu Rev Chem Biomol Eng 9:341–364
Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol 7:12–46
Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653
[+]
Stangland EE (2018) Shale gas implications for C2–C3 olefin production: incumbent and future technology. Annu Rev Chem Biomol Eng 9:341–364
Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol 7:12–46
Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653
Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A-Chem 213:39–45
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MPLRX_NUS_1&f=M
Zhu X, Hofmann JP, Mezari B, Kosinov N, Wu L, Qian Q, Weckhuysen BM, Asahina S, Ruiz-Martínez J, Hensen EJM (2016) Trimodal Porous Hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal 6:2163–2177
Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33:817–833
Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131
Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2–C3 alkanes on oxide catalysts. Catal Rev 48:199–268
Grant JT, Venegas JM, McDermott WP, Hermans I (2018) Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem Rev 118:2769–2815
Gärtner CA, van Veen AC, Lercher JA (2013) Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–3217
Blasco T, López Nieto JM (1997) Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Catal A-Gen 157:117–142
Argyle MD, Chen K, Bell AT, Iglesia E (2002) Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J Catal 208:139–149
Zboray M, Bell AT, Iglesia E (2009) Role of C-H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. J Phys Chem C 113:12380–12386
Rozanska X, Fortrie R, Sauer J (2014) Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane. J Am Chem Soc 136:7751–7761
Solsona B, Blasco T, López Nieto JM, Peña ML, Rey F, Vidal-Moya A (2001) Vanadium-containing MCM-41 for partial oxidation of lower alkanes. J Catal 203:443–452
Heracleous E, Lemonidou AA (2006) Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: characterization and catalytic performance. J Catal 237:162–174
Lopez Nieto JM, Solsona B, Grasselli RK, Concepcion P (2014) Promoted NiO catalysts for the oxidative dehydrogenation of ethane. Top Catal 57:1248–1255
Zhu H, Rosenfeld DC, Harb M, Anjum DH, Hedhili MN, Ould-Chikh S, Basset JM (2016) Ni−M−O (M = Sn, Ti, W) Catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane. ACS Catal 6:2852–2866
Heracleous E, Lemonidou AA (2010) Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene-Effect of promoting metal Me. J Catal 270:67–75
Qiao A, Kalevaru VN, Radnik J, Martin A (2016) Oxidative dehydrogenation of ethane to ethylene over Ni–Nb–M–O catalysts: effect of promoter metal and CO2-admixture on the performance. Cat Today 264:144–151
Sanchis A, Delgado D, Agouram S, Soriano MD, Vázquez MI, Rodriguez-Castellón E, Solsona B, Lopez Nieto JM (2017) NiO diluted in high surface area TiO2 as an efficient catalyst for the oxidative dehydrogenation of ethane. Appl Catal A-Gen 536:18–26
Zhu H, Dong H, Laveille P, Saih Y, Caps V, Basset JM (2014) Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal Today 228:58–64
Jalowiecki-Duhamel L, Ponchel A, Lamonier C, D’Huysser A, Barbaux Y (2001) Relationship between structure of CeNiXOY mixed oxides and catalytic properties in oxidative dehydrogenation of propane. Langmuir 17:1511–1517
Boizumault-Moriceau P, Pennequin A, Grzybowska B, Barbaux Y (2003) Oxidative dehydrogenation of propane on Ni-Ce-O oxide: effect of the preparation method, effect of potassium addition and physical characterization. Appl Catal A-Gen 245:55–67
Li J-H, Wang C, Huang Ch, Sun Y, Weng W, Wan H (2010) Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene. Appl Catal A-Gen 382:99–105
Fang K, Liu L, Zhang M, Zhao L, Zhou J, Li W, Mu X, Yang Ch (2018) Synthesis of three-dimensionally ordered macroporous NiCe catalysts for oxidative dehydrogenation of propane to propene. Catalysts 8:19
Du K, Hao M, Li Zh, Hong W, Liu J, Xiao L, Zou Sh, Kobayashi H, Fan J (2019) Tuning catalytic selectivity of propane oxidative dehydrogenation via surface polymeric phosphate modification on nickel oxide nanoparticles. Chin J Catal 40:1057–1062
Yao YFY, Kummer JT (1973) The oxidation of hydrocarbons and CO over metal oxides I NiO crystals. J Catal 28:124–138
Smolakova L, Capek L, Botkova S, Kovanda F, Bulanek R, Pouzar M (2011) Activity of the Ni–Al mixed oxides prepared from hydrotalcite-like precursors in the oxidative dehydrogenation of ethane and propane. Top Catal 54:1151–1162
Dietz RE, Parisot GI, Meixner AE (1971) Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys Rev B 4:2302–2310
Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. J Phys Chem B 110:927–935
Li C, Li M (2002) UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J Raman Spectrosc 33:301–308
Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27:3872–3877
Dietz RE, Brinkman WF, Meixner AE, Guggenheim HJ (1971) Raman scattering by four magnons in NiO and KNiF3. Phys Rev Lett 27:814
Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 93:012039
George G, Anandhan S (2014) Synthesis and characterisation of nickel oxide nanofibre webs with alcohol sensing characteristics. RSC Adv 4:62009–62020
Budde M, Tschammer C, Franz Ph, Feldl J, Ramsteiner M, Goldhahn R, Feneberg M, Barsan N, Oprea A, Bierwagen O (2018) Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy. J Appl Phys 123:195301
Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, López Nieto JM (2012) Selective oxidative dehydrogenation of ethane over SnO2-promoted NiO catalysts. J Catal 295:104–114
Dupin JC, Gonbeau D, Vinatier Ph, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324
Haber J (1995) Mechanism of heterogeneous catalytic oxidation. In: Sheldon RA, van Santen RA (eds) Catalytic oxidation: principles and applications. World Scientific, Singapore, pp 17–51
Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmair CG, Volpe AF Jr, Weingand T (2002) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi–Mo–Ox to Mo–V–Nb–(Te; Sb)–Ox. Top Catal 21:79–88
Delgado D, Solsona B, Ykrelef A, Rodríguez-Gómez A, Caballero A, Rodríguez-Aguado E, Rodríguez-Castellón E, López Nieto JM (2017) Redox and catalytic properties of promoted NiO catalysts for the oxidative dehydrogenation of ethane. J Phys Chem C 121:25132–25142
Skoufa Z, Heracleous E, Lemonidou AA (2015) On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. J Catal 322:118–129
Savova B, Loridant S, Filkova D, Millet JMM (2010) Ni-Nb-O catalysts for ethane oxidative dehydrogenation. Appl Catal A-Gen 390:148–157
Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biuasque G, Basset JM, Caps V (2012) Nb effect in the nickel oxide catalyzed low-temperature oxidative dehydrogenation of ethane. J Catal 285:292–303
Delgado D, Sanchís R, Cecilia JA, Rodríguez-Castellón E, Caballero A, Solsona B, López Nieto JM (2019) Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Cat Today 333:10–16
Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. J Catal 231:159–171
Lopez Nieto JM, Coenraads R, Dejoz A, Vazquez MI (1997) The role of metal oxides as promoters of V2O5/γ-Al2O3 catalysts in the oxidative dehydrogenation of propane. Stud Surf Sci Catal 110:443–451
Heracleous E, Machli M, Lemonidou AA, Vasalos IA (2005) Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. J Mol Catal A-Chem 232:29–39
Kung HH, Kung MC (1997) Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides. Appl Catal A-Gen 157:105–116
Batiot C, Hodnett BK (1996) The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. Appl Catal A-Gen 137:179–191
Moro-oka Y, Ozaki A (1967) The nature of adsorbed olefin on nickel oxide as revealed by a competitive reaction method. J Am Chem Soc 89:5124–5128
Moro-oka Y, Morikawa Y, Ozaki A (1967) Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J Catal 7:23–32
[-]