- -

Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane

Mostrar el registro completo del ítem

Delgado Muñoz, D.; Sanchis, R.; Solsona Espriu, BE.; Concepción Heydorn, P.; López Nieto, JM. (2020). Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane. Topics in Catalysis. 63(19-20):1731-1742. https://doi.org/10.1007/s11244-020-01329-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183042

Ficheros en el ítem

Metadatos del ítem

Título: Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane
Autor: Delgado Muñoz, Daniel Sanchis, Rut Solsona Espriu, Benjamin Eduardo Concepción Heydorn, Patricia López Nieto, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] A comparative study of the catalytic properties for the oxidation of C2-C3 alkanes and olefins has been carried out over unpromoted and M-promoted NiO catalysts (Me¿=¿K, La, Ce, al, Zr, Sn, Nb). The catalysts have ...[+]
Palabras clave: Propane , Ethane , Oxidative dehydrogenation , Olefins , Promoters , Nickel oxide
Derechos de uso: Reserva de todos los derechos
Fuente:
Topics in Catalysis. (issn: 1022-5528 )
DOI: 10.1007/s11244-020-01329-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11244-020-01329-5
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84118-C2-1-R/ES/VALORIZACION DE RECURSOS NATURALES COMO NUEVOS MATERIALES AVANZADOS :APLICACIONES CATALITICAS Y ELECTROQUIMICAS/
info:eu-repo/grantAgreement/MINECO//SVP-2014-068669//SVP-2014-068669/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/MCIU//SEV-2016-0683/
Agradecimientos:
The authors would like to acknowledge the Ministerio de Ciencia, Innovacion y Universidades of Spain (RTl2018-099668-B-C21 and MAT2017-84118-C2-1-R projects) and FEDER. Authors from ITQ also thank Project SEV-2016-0683 for ...[+]
Tipo: Artículo

References

Stangland EE (2018) Shale gas implications for C2–C3 olefin production: incumbent and future technology. Annu Rev Chem Biomol Eng 9:341–364

Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol 7:12–46

Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653 [+]
Stangland EE (2018) Shale gas implications for C2–C3 olefin production: incumbent and future technology. Annu Rev Chem Biomol Eng 9:341–364

Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol 7:12–46

Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653

Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A-Chem 213:39–45

https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MPLRX_NUS_1&f=M

Zhu X, Hofmann JP, Mezari B, Kosinov N, Wu L, Qian Q, Weckhuysen BM, Asahina S, Ruiz-Martínez J, Hensen EJM (2016) Trimodal Porous Hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal 6:2163–2177

Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33:817–833

Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131

Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2–C3 alkanes on oxide catalysts. Catal Rev 48:199–268

Grant JT, Venegas JM, McDermott WP, Hermans I (2018) Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem Rev 118:2769–2815

Gärtner CA, van Veen AC, Lercher JA (2013) Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–3217

Blasco T, López Nieto JM (1997) Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Catal A-Gen 157:117–142

Argyle MD, Chen K, Bell AT, Iglesia E (2002) Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J Catal 208:139–149

Zboray M, Bell AT, Iglesia E (2009) Role of C-H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. J Phys Chem C 113:12380–12386

Rozanska X, Fortrie R, Sauer J (2014) Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane. J Am Chem Soc 136:7751–7761

Solsona B, Blasco T, López Nieto JM, Peña ML, Rey F, Vidal-Moya A (2001) Vanadium-containing MCM-41 for partial oxidation of lower alkanes. J Catal 203:443–452

Heracleous E, Lemonidou AA (2006) Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: characterization and catalytic performance. J Catal 237:162–174

Lopez Nieto JM, Solsona B, Grasselli RK, Concepcion P (2014) Promoted NiO catalysts for the oxidative dehydrogenation of ethane. Top Catal 57:1248–1255

Zhu H, Rosenfeld DC, Harb M, Anjum DH, Hedhili MN, Ould-Chikh S, Basset JM (2016) Ni−M−O (M = Sn, Ti, W) Catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane. ACS Catal 6:2852–2866

Heracleous E, Lemonidou AA (2010) Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene-Effect of promoting metal Me. J Catal 270:67–75

Qiao A, Kalevaru VN, Radnik J, Martin A (2016) Oxidative dehydrogenation of ethane to ethylene over Ni–Nb–M–O catalysts: effect of promoter metal and CO2-admixture on the performance. Cat Today 264:144–151

Sanchis A, Delgado D, Agouram S, Soriano MD, Vázquez MI, Rodriguez-Castellón E, Solsona B, Lopez Nieto JM (2017) NiO diluted in high surface area TiO2 as an efficient catalyst for the oxidative dehydrogenation of ethane. Appl Catal A-Gen 536:18–26

Zhu H, Dong H, Laveille P, Saih Y, Caps V, Basset JM (2014) Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal Today 228:58–64

Jalowiecki-Duhamel L, Ponchel A, Lamonier C, D’Huysser A, Barbaux Y (2001) Relationship between structure of CeNiXOY mixed oxides and catalytic properties in oxidative dehydrogenation of propane. Langmuir 17:1511–1517

Boizumault-Moriceau P, Pennequin A, Grzybowska B, Barbaux Y (2003) Oxidative dehydrogenation of propane on Ni-Ce-O oxide: effect of the preparation method, effect of potassium addition and physical characterization. Appl Catal A-Gen 245:55–67

Li J-H, Wang C, Huang Ch, Sun Y, Weng W, Wan H (2010) Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene. Appl Catal A-Gen 382:99–105

Fang K, Liu L, Zhang M, Zhao L, Zhou J, Li W, Mu X, Yang Ch (2018) Synthesis of three-dimensionally ordered macroporous NiCe catalysts for oxidative dehydrogenation of propane to propene. Catalysts 8:19

Du K, Hao M, Li Zh, Hong W, Liu J, Xiao L, Zou Sh, Kobayashi H, Fan J (2019) Tuning catalytic selectivity of propane oxidative dehydrogenation via surface polymeric phosphate modification on nickel oxide nanoparticles. Chin J Catal 40:1057–1062

Yao YFY, Kummer JT (1973) The oxidation of hydrocarbons and CO over metal oxides I NiO crystals. J Catal 28:124–138

Smolakova L, Capek L, Botkova S, Kovanda F, Bulanek R, Pouzar M (2011) Activity of the Ni–Al mixed oxides prepared from hydrotalcite-like precursors in the oxidative dehydrogenation of ethane and propane. Top Catal 54:1151–1162

Dietz RE, Parisot GI, Meixner AE (1971) Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys Rev B 4:2302–2310

Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. J Phys Chem B 110:927–935

Li C, Li M (2002) UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J Raman Spectrosc 33:301–308

Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27:3872–3877

Dietz RE, Brinkman WF, Meixner AE, Guggenheim HJ (1971) Raman scattering by four magnons in NiO and KNiF3. Phys Rev Lett 27:814

Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 93:012039

George G, Anandhan S (2014) Synthesis and characterisation of nickel oxide nanofibre webs with alcohol sensing characteristics. RSC Adv 4:62009–62020

Budde M, Tschammer C, Franz Ph, Feldl J, Ramsteiner M, Goldhahn R, Feneberg M, Barsan N, Oprea A, Bierwagen O (2018) Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy. J Appl Phys 123:195301

Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, López Nieto JM (2012) Selective oxidative dehydrogenation of ethane over SnO2-promoted NiO catalysts. J Catal 295:104–114

Dupin JC, Gonbeau D, Vinatier Ph, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324

Haber J (1995) Mechanism of heterogeneous catalytic oxidation. In: Sheldon RA, van Santen RA (eds) Catalytic oxidation: principles and applications. World Scientific, Singapore, pp 17–51

Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmair CG, Volpe AF Jr, Weingand T (2002) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi–Mo–Ox to Mo–V–Nb–(Te; Sb)–Ox. Top Catal 21:79–88

Delgado D, Solsona B, Ykrelef A, Rodríguez-Gómez A, Caballero A, Rodríguez-Aguado E, Rodríguez-Castellón E, López Nieto JM (2017) Redox and catalytic properties of promoted NiO catalysts for the oxidative dehydrogenation of ethane. J Phys Chem C 121:25132–25142

Skoufa Z, Heracleous E, Lemonidou AA (2015) On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. J Catal 322:118–129

Savova B, Loridant S, Filkova D, Millet JMM (2010) Ni-Nb-O catalysts for ethane oxidative dehydrogenation. Appl Catal A-Gen 390:148–157

Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biuasque G, Basset JM, Caps V (2012) Nb effect in the nickel oxide catalyzed low-temperature oxidative dehydrogenation of ethane. J Catal 285:292–303

Delgado D, Sanchís R, Cecilia JA, Rodríguez-Castellón E, Caballero A, Solsona B, López Nieto JM (2019) Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Cat Today 333:10–16

Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. J Catal 231:159–171

Lopez Nieto JM, Coenraads R, Dejoz A, Vazquez MI (1997) The role of metal oxides as promoters of V2O5/γ-Al2O3 catalysts in the oxidative dehydrogenation of propane. Stud Surf Sci Catal 110:443–451

Heracleous E, Machli M, Lemonidou AA, Vasalos IA (2005) Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. J Mol Catal A-Chem 232:29–39

Kung HH, Kung MC (1997) Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides. Appl Catal A-Gen 157:105–116

Batiot C, Hodnett BK (1996) The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. Appl Catal A-Gen 137:179–191

Moro-oka Y, Ozaki A (1967) The nature of adsorbed olefin on nickel oxide as revealed by a competitive reaction method. J Am Chem Soc 89:5124–5128

Moro-oka Y, Morikawa Y, Ozaki A (1967) Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J Catal 7:23–32

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem