- -

Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delgado Muñoz, Daniel es_ES
dc.contributor.author Sanchis, Rut es_ES
dc.contributor.author Solsona Espriu, Benjamin Eduardo es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.date.accessioned 2022-06-01T18:07:18Z
dc.date.available 2022-06-01T18:07:18Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 1022-5528 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183042
dc.description.abstract [EN] A comparative study of the catalytic properties for the oxidation of C2-C3 alkanes and olefins has been carried out over unpromoted and M-promoted NiO catalysts (Me¿=¿K, La, Ce, al, Zr, Sn, Nb). The catalysts have been characterized by several physico-chemical techniques (UV Raman, Visible Raman, FTIR of adsorbed CO and XPS). The characteristics of promoter elements are of paramount importance, since they are able to modify both the nature of the active nickel and the concentration of electrophilic O2¿/O¿ oxygen species. Thus, a relatively high acidity and valence of the promoter oxide (with oxidation state higher than¿+¿3) are necessary to achieve high selectivity to olefins during the oxidative dehydrogenation (ODH) of C2¿C3 alkanes. In addition, an inverse correlation between the selectivity to the corresponding olefin and the concentration of electrophilic oxygen species has been observed, although the selectivity to propene during propane ODH is lower than the selectivity to ethylene achieved during ethane ODH. On the other hand, a very low influence of alkane conversion on the selectivity to the corresponding olefins is observed. This behaviour can be explained by considering that the reaction rate for olefin combustion is lower than the reaction rate for alkane oxidation. However, the comparative study of the oxidation of alkanes and olefins suggest that the differences observed between the ODH of propane and ethane are not related to the reactivity of olefins, but to the different number and reactivity of C¿H bonds in both alkanes. A discussion on the importance of the concentration of active sites and the characteristics of the alkanes fed on the selectivity to olefin during the alkane ODH is also presented. es_ES
dc.description.sponsorship The authors would like to acknowledge the Ministerio de Ciencia, Innovacion y Universidades of Spain (RTl2018-099668-B-C21 and MAT2017-84118-C2-1-R projects) and FEDER. Authors from ITQ also thank Project SEV-2016-0683 for supporting this research. D.D. thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Propane es_ES
dc.subject Ethane es_ES
dc.subject Oxidative dehydrogenation es_ES
dc.subject Olefins es_ES
dc.subject Promoters es_ES
dc.subject Nickel oxide es_ES
dc.title Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11244-020-01329-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84118-C2-1-R/ES/VALORIZACION DE RECURSOS NATURALES COMO NUEVOS MATERIALES AVANZADOS :APLICACIONES CATALITICAS Y ELECTROQUIMICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2014-068669//SVP-2014-068669/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Delgado Muñoz, D.; Sanchis, R.; Solsona Espriu, BE.; Concepción Heydorn, P.; López Nieto, JM. (2020). Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane. Topics in Catalysis. 63(19-20):1731-1742. https://doi.org/10.1007/s11244-020-01329-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11244-020-01329-5 es_ES
dc.description.upvformatpinicio 1731 es_ES
dc.description.upvformatpfin 1742 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 63 es_ES
dc.description.issue 19-20 es_ES
dc.relation.pasarela S\431392 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología es_ES
dc.description.references Stangland EE (2018) Shale gas implications for C2–C3 olefin production: incumbent and future technology. Annu Rev Chem Biomol Eng 9:341–364 es_ES
dc.description.references Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol 7:12–46 es_ES
dc.description.references Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653 es_ES
dc.description.references Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A-Chem 213:39–45 es_ES
dc.description.references https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MPLRX_NUS_1&f=M es_ES
dc.description.references Zhu X, Hofmann JP, Mezari B, Kosinov N, Wu L, Qian Q, Weckhuysen BM, Asahina S, Ruiz-Martínez J, Hensen EJM (2016) Trimodal Porous Hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal 6:2163–2177 es_ES
dc.description.references Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33:817–833 es_ES
dc.description.references Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131 es_ES
dc.description.references Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2–C3 alkanes on oxide catalysts. Catal Rev 48:199–268 es_ES
dc.description.references Grant JT, Venegas JM, McDermott WP, Hermans I (2018) Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem Rev 118:2769–2815 es_ES
dc.description.references Gärtner CA, van Veen AC, Lercher JA (2013) Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–3217 es_ES
dc.description.references Blasco T, López Nieto JM (1997) Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Catal A-Gen 157:117–142 es_ES
dc.description.references Argyle MD, Chen K, Bell AT, Iglesia E (2002) Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J Catal 208:139–149 es_ES
dc.description.references Zboray M, Bell AT, Iglesia E (2009) Role of C-H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. J Phys Chem C 113:12380–12386 es_ES
dc.description.references Rozanska X, Fortrie R, Sauer J (2014) Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane. J Am Chem Soc 136:7751–7761 es_ES
dc.description.references Solsona B, Blasco T, López Nieto JM, Peña ML, Rey F, Vidal-Moya A (2001) Vanadium-containing MCM-41 for partial oxidation of lower alkanes. J Catal 203:443–452 es_ES
dc.description.references Heracleous E, Lemonidou AA (2006) Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: characterization and catalytic performance. J Catal 237:162–174 es_ES
dc.description.references Lopez Nieto JM, Solsona B, Grasselli RK, Concepcion P (2014) Promoted NiO catalysts for the oxidative dehydrogenation of ethane. Top Catal 57:1248–1255 es_ES
dc.description.references Zhu H, Rosenfeld DC, Harb M, Anjum DH, Hedhili MN, Ould-Chikh S, Basset JM (2016) Ni−M−O (M = Sn, Ti, W) Catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane. ACS Catal 6:2852–2866 es_ES
dc.description.references Heracleous E, Lemonidou AA (2010) Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene-Effect of promoting metal Me. J Catal 270:67–75 es_ES
dc.description.references Qiao A, Kalevaru VN, Radnik J, Martin A (2016) Oxidative dehydrogenation of ethane to ethylene over Ni–Nb–M–O catalysts: effect of promoter metal and CO2-admixture on the performance. Cat Today 264:144–151 es_ES
dc.description.references Sanchis A, Delgado D, Agouram S, Soriano MD, Vázquez MI, Rodriguez-Castellón E, Solsona B, Lopez Nieto JM (2017) NiO diluted in high surface area TiO2 as an efficient catalyst for the oxidative dehydrogenation of ethane. Appl Catal A-Gen 536:18–26 es_ES
dc.description.references Zhu H, Dong H, Laveille P, Saih Y, Caps V, Basset JM (2014) Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal Today 228:58–64 es_ES
dc.description.references Jalowiecki-Duhamel L, Ponchel A, Lamonier C, D’Huysser A, Barbaux Y (2001) Relationship between structure of CeNiXOY mixed oxides and catalytic properties in oxidative dehydrogenation of propane. Langmuir 17:1511–1517 es_ES
dc.description.references Boizumault-Moriceau P, Pennequin A, Grzybowska B, Barbaux Y (2003) Oxidative dehydrogenation of propane on Ni-Ce-O oxide: effect of the preparation method, effect of potassium addition and physical characterization. Appl Catal A-Gen 245:55–67 es_ES
dc.description.references Li J-H, Wang C, Huang Ch, Sun Y, Weng W, Wan H (2010) Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene. Appl Catal A-Gen 382:99–105 es_ES
dc.description.references Fang K, Liu L, Zhang M, Zhao L, Zhou J, Li W, Mu X, Yang Ch (2018) Synthesis of three-dimensionally ordered macroporous NiCe catalysts for oxidative dehydrogenation of propane to propene. Catalysts 8:19 es_ES
dc.description.references Du K, Hao M, Li Zh, Hong W, Liu J, Xiao L, Zou Sh, Kobayashi H, Fan J (2019) Tuning catalytic selectivity of propane oxidative dehydrogenation via surface polymeric phosphate modification on nickel oxide nanoparticles. Chin J Catal 40:1057–1062 es_ES
dc.description.references Yao YFY, Kummer JT (1973) The oxidation of hydrocarbons and CO over metal oxides I NiO crystals. J Catal 28:124–138 es_ES
dc.description.references Smolakova L, Capek L, Botkova S, Kovanda F, Bulanek R, Pouzar M (2011) Activity of the Ni–Al mixed oxides prepared from hydrotalcite-like precursors in the oxidative dehydrogenation of ethane and propane. Top Catal 54:1151–1162 es_ES
dc.description.references Dietz RE, Parisot GI, Meixner AE (1971) Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys Rev B 4:2302–2310 es_ES
dc.description.references Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. J Phys Chem B 110:927–935 es_ES
dc.description.references Li C, Li M (2002) UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J Raman Spectrosc 33:301–308 es_ES
dc.description.references Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27:3872–3877 es_ES
dc.description.references Dietz RE, Brinkman WF, Meixner AE, Guggenheim HJ (1971) Raman scattering by four magnons in NiO and KNiF3. Phys Rev Lett 27:814 es_ES
dc.description.references Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 93:012039 es_ES
dc.description.references George G, Anandhan S (2014) Synthesis and characterisation of nickel oxide nanofibre webs with alcohol sensing characteristics. RSC Adv 4:62009–62020 es_ES
dc.description.references Budde M, Tschammer C, Franz Ph, Feldl J, Ramsteiner M, Goldhahn R, Feneberg M, Barsan N, Oprea A, Bierwagen O (2018) Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy. J Appl Phys 123:195301 es_ES
dc.description.references Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, López Nieto JM (2012) Selective oxidative dehydrogenation of ethane over SnO2-promoted NiO catalysts. J Catal 295:104–114 es_ES
dc.description.references Dupin JC, Gonbeau D, Vinatier Ph, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324 es_ES
dc.description.references Haber J (1995) Mechanism of heterogeneous catalytic oxidation. In: Sheldon RA, van Santen RA (eds) Catalytic oxidation: principles and applications. World Scientific, Singapore, pp 17–51 es_ES
dc.description.references Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmair CG, Volpe AF Jr, Weingand T (2002) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi–Mo–Ox to Mo–V–Nb–(Te; Sb)–Ox. Top Catal 21:79–88 es_ES
dc.description.references Delgado D, Solsona B, Ykrelef A, Rodríguez-Gómez A, Caballero A, Rodríguez-Aguado E, Rodríguez-Castellón E, López Nieto JM (2017) Redox and catalytic properties of promoted NiO catalysts for the oxidative dehydrogenation of ethane. J Phys Chem C 121:25132–25142 es_ES
dc.description.references Skoufa Z, Heracleous E, Lemonidou AA (2015) On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. J Catal 322:118–129 es_ES
dc.description.references Savova B, Loridant S, Filkova D, Millet JMM (2010) Ni-Nb-O catalysts for ethane oxidative dehydrogenation. Appl Catal A-Gen 390:148–157 es_ES
dc.description.references Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biuasque G, Basset JM, Caps V (2012) Nb effect in the nickel oxide catalyzed low-temperature oxidative dehydrogenation of ethane. J Catal 285:292–303 es_ES
dc.description.references Delgado D, Sanchís R, Cecilia JA, Rodríguez-Castellón E, Caballero A, Solsona B, López Nieto JM (2019) Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Cat Today 333:10–16 es_ES
dc.description.references Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. J Catal 231:159–171 es_ES
dc.description.references Lopez Nieto JM, Coenraads R, Dejoz A, Vazquez MI (1997) The role of metal oxides as promoters of V2O5/γ-Al2O3 catalysts in the oxidative dehydrogenation of propane. Stud Surf Sci Catal 110:443–451 es_ES
dc.description.references Heracleous E, Machli M, Lemonidou AA, Vasalos IA (2005) Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. J Mol Catal A-Chem 232:29–39 es_ES
dc.description.references Kung HH, Kung MC (1997) Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides. Appl Catal A-Gen 157:105–116 es_ES
dc.description.references Batiot C, Hodnett BK (1996) The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. Appl Catal A-Gen 137:179–191 es_ES
dc.description.references Moro-oka Y, Ozaki A (1967) The nature of adsorbed olefin on nickel oxide as revealed by a competitive reaction method. J Am Chem Soc 89:5124–5128 es_ES
dc.description.references Moro-oka Y, Morikawa Y, Ozaki A (1967) Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J Catal 7:23–32 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem