Mostrar el registro sencillo del ítem
dc.contributor.author | Delgado Muñoz, Daniel | es_ES |
dc.contributor.author | Sanchis, Rut | es_ES |
dc.contributor.author | Solsona Espriu, Benjamin Eduardo | es_ES |
dc.contributor.author | Concepción Heydorn, Patricia | es_ES |
dc.contributor.author | López Nieto, José Manuel | es_ES |
dc.date.accessioned | 2022-06-01T18:07:18Z | |
dc.date.available | 2022-06-01T18:07:18Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 1022-5528 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183042 | |
dc.description.abstract | [EN] A comparative study of the catalytic properties for the oxidation of C2-C3 alkanes and olefins has been carried out over unpromoted and M-promoted NiO catalysts (Me¿=¿K, La, Ce, al, Zr, Sn, Nb). The catalysts have been characterized by several physico-chemical techniques (UV Raman, Visible Raman, FTIR of adsorbed CO and XPS). The characteristics of promoter elements are of paramount importance, since they are able to modify both the nature of the active nickel and the concentration of electrophilic O2¿/O¿ oxygen species. Thus, a relatively high acidity and valence of the promoter oxide (with oxidation state higher than¿+¿3) are necessary to achieve high selectivity to olefins during the oxidative dehydrogenation (ODH) of C2¿C3 alkanes. In addition, an inverse correlation between the selectivity to the corresponding olefin and the concentration of electrophilic oxygen species has been observed, although the selectivity to propene during propane ODH is lower than the selectivity to ethylene achieved during ethane ODH. On the other hand, a very low influence of alkane conversion on the selectivity to the corresponding olefins is observed. This behaviour can be explained by considering that the reaction rate for olefin combustion is lower than the reaction rate for alkane oxidation. However, the comparative study of the oxidation of alkanes and olefins suggest that the differences observed between the ODH of propane and ethane are not related to the reactivity of olefins, but to the different number and reactivity of C¿H bonds in both alkanes. A discussion on the importance of the concentration of active sites and the characteristics of the alkanes fed on the selectivity to olefin during the alkane ODH is also presented. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the Ministerio de Ciencia, Innovacion y Universidades of Spain (RTl2018-099668-B-C21 and MAT2017-84118-C2-1-R projects) and FEDER. Authors from ITQ also thank Project SEV-2016-0683 for supporting this research. D.D. thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Topics in Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Propane | es_ES |
dc.subject | Ethane | es_ES |
dc.subject | Oxidative dehydrogenation | es_ES |
dc.subject | Olefins | es_ES |
dc.subject | Promoters | es_ES |
dc.subject | Nickel oxide | es_ES |
dc.title | Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11244-020-01329-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84118-C2-1-R/ES/VALORIZACION DE RECURSOS NATURALES COMO NUEVOS MATERIALES AVANZADOS :APLICACIONES CATALITICAS Y ELECTROQUIMICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SVP-2014-068669//SVP-2014-068669/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Delgado Muñoz, D.; Sanchis, R.; Solsona Espriu, BE.; Concepción Heydorn, P.; López Nieto, JM. (2020). Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane. Topics in Catalysis. 63(19-20):1731-1742. https://doi.org/10.1007/s11244-020-01329-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11244-020-01329-5 | es_ES |
dc.description.upvformatpinicio | 1731 | es_ES |
dc.description.upvformatpfin | 1742 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 63 | es_ES |
dc.description.issue | 19-20 | es_ES |
dc.relation.pasarela | S\431392 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Comisión Interministerial de Ciencia y Tecnología | es_ES |
dc.description.references | Stangland EE (2018) Shale gas implications for C2–C3 olefin production: incumbent and future technology. Annu Rev Chem Biomol Eng 9:341–364 | es_ES |
dc.description.references | Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol 7:12–46 | es_ES |
dc.description.references | Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653 | es_ES |
dc.description.references | Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A-Chem 213:39–45 | es_ES |
dc.description.references | https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MPLRX_NUS_1&f=M | es_ES |
dc.description.references | Zhu X, Hofmann JP, Mezari B, Kosinov N, Wu L, Qian Q, Weckhuysen BM, Asahina S, Ruiz-Martínez J, Hensen EJM (2016) Trimodal Porous Hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal 6:2163–2177 | es_ES |
dc.description.references | Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33:817–833 | es_ES |
dc.description.references | Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131 | es_ES |
dc.description.references | Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2–C3 alkanes on oxide catalysts. Catal Rev 48:199–268 | es_ES |
dc.description.references | Grant JT, Venegas JM, McDermott WP, Hermans I (2018) Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem Rev 118:2769–2815 | es_ES |
dc.description.references | Gärtner CA, van Veen AC, Lercher JA (2013) Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–3217 | es_ES |
dc.description.references | Blasco T, López Nieto JM (1997) Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Catal A-Gen 157:117–142 | es_ES |
dc.description.references | Argyle MD, Chen K, Bell AT, Iglesia E (2002) Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J Catal 208:139–149 | es_ES |
dc.description.references | Zboray M, Bell AT, Iglesia E (2009) Role of C-H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. J Phys Chem C 113:12380–12386 | es_ES |
dc.description.references | Rozanska X, Fortrie R, Sauer J (2014) Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane. J Am Chem Soc 136:7751–7761 | es_ES |
dc.description.references | Solsona B, Blasco T, López Nieto JM, Peña ML, Rey F, Vidal-Moya A (2001) Vanadium-containing MCM-41 for partial oxidation of lower alkanes. J Catal 203:443–452 | es_ES |
dc.description.references | Heracleous E, Lemonidou AA (2006) Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: characterization and catalytic performance. J Catal 237:162–174 | es_ES |
dc.description.references | Lopez Nieto JM, Solsona B, Grasselli RK, Concepcion P (2014) Promoted NiO catalysts for the oxidative dehydrogenation of ethane. Top Catal 57:1248–1255 | es_ES |
dc.description.references | Zhu H, Rosenfeld DC, Harb M, Anjum DH, Hedhili MN, Ould-Chikh S, Basset JM (2016) Ni−M−O (M = Sn, Ti, W) Catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane. ACS Catal 6:2852–2866 | es_ES |
dc.description.references | Heracleous E, Lemonidou AA (2010) Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene-Effect of promoting metal Me. J Catal 270:67–75 | es_ES |
dc.description.references | Qiao A, Kalevaru VN, Radnik J, Martin A (2016) Oxidative dehydrogenation of ethane to ethylene over Ni–Nb–M–O catalysts: effect of promoter metal and CO2-admixture on the performance. Cat Today 264:144–151 | es_ES |
dc.description.references | Sanchis A, Delgado D, Agouram S, Soriano MD, Vázquez MI, Rodriguez-Castellón E, Solsona B, Lopez Nieto JM (2017) NiO diluted in high surface area TiO2 as an efficient catalyst for the oxidative dehydrogenation of ethane. Appl Catal A-Gen 536:18–26 | es_ES |
dc.description.references | Zhu H, Dong H, Laveille P, Saih Y, Caps V, Basset JM (2014) Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal Today 228:58–64 | es_ES |
dc.description.references | Jalowiecki-Duhamel L, Ponchel A, Lamonier C, D’Huysser A, Barbaux Y (2001) Relationship between structure of CeNiXOY mixed oxides and catalytic properties in oxidative dehydrogenation of propane. Langmuir 17:1511–1517 | es_ES |
dc.description.references | Boizumault-Moriceau P, Pennequin A, Grzybowska B, Barbaux Y (2003) Oxidative dehydrogenation of propane on Ni-Ce-O oxide: effect of the preparation method, effect of potassium addition and physical characterization. Appl Catal A-Gen 245:55–67 | es_ES |
dc.description.references | Li J-H, Wang C, Huang Ch, Sun Y, Weng W, Wan H (2010) Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene. Appl Catal A-Gen 382:99–105 | es_ES |
dc.description.references | Fang K, Liu L, Zhang M, Zhao L, Zhou J, Li W, Mu X, Yang Ch (2018) Synthesis of three-dimensionally ordered macroporous NiCe catalysts for oxidative dehydrogenation of propane to propene. Catalysts 8:19 | es_ES |
dc.description.references | Du K, Hao M, Li Zh, Hong W, Liu J, Xiao L, Zou Sh, Kobayashi H, Fan J (2019) Tuning catalytic selectivity of propane oxidative dehydrogenation via surface polymeric phosphate modification on nickel oxide nanoparticles. Chin J Catal 40:1057–1062 | es_ES |
dc.description.references | Yao YFY, Kummer JT (1973) The oxidation of hydrocarbons and CO over metal oxides I NiO crystals. J Catal 28:124–138 | es_ES |
dc.description.references | Smolakova L, Capek L, Botkova S, Kovanda F, Bulanek R, Pouzar M (2011) Activity of the Ni–Al mixed oxides prepared from hydrotalcite-like precursors in the oxidative dehydrogenation of ethane and propane. Top Catal 54:1151–1162 | es_ES |
dc.description.references | Dietz RE, Parisot GI, Meixner AE (1971) Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys Rev B 4:2302–2310 | es_ES |
dc.description.references | Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. J Phys Chem B 110:927–935 | es_ES |
dc.description.references | Li C, Li M (2002) UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J Raman Spectrosc 33:301–308 | es_ES |
dc.description.references | Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27:3872–3877 | es_ES |
dc.description.references | Dietz RE, Brinkman WF, Meixner AE, Guggenheim HJ (1971) Raman scattering by four magnons in NiO and KNiF3. Phys Rev Lett 27:814 | es_ES |
dc.description.references | Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 93:012039 | es_ES |
dc.description.references | George G, Anandhan S (2014) Synthesis and characterisation of nickel oxide nanofibre webs with alcohol sensing characteristics. RSC Adv 4:62009–62020 | es_ES |
dc.description.references | Budde M, Tschammer C, Franz Ph, Feldl J, Ramsteiner M, Goldhahn R, Feneberg M, Barsan N, Oprea A, Bierwagen O (2018) Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy. J Appl Phys 123:195301 | es_ES |
dc.description.references | Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, López Nieto JM (2012) Selective oxidative dehydrogenation of ethane over SnO2-promoted NiO catalysts. J Catal 295:104–114 | es_ES |
dc.description.references | Dupin JC, Gonbeau D, Vinatier Ph, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324 | es_ES |
dc.description.references | Haber J (1995) Mechanism of heterogeneous catalytic oxidation. In: Sheldon RA, van Santen RA (eds) Catalytic oxidation: principles and applications. World Scientific, Singapore, pp 17–51 | es_ES |
dc.description.references | Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmair CG, Volpe AF Jr, Weingand T (2002) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi–Mo–Ox to Mo–V–Nb–(Te; Sb)–Ox. Top Catal 21:79–88 | es_ES |
dc.description.references | Delgado D, Solsona B, Ykrelef A, Rodríguez-Gómez A, Caballero A, Rodríguez-Aguado E, Rodríguez-Castellón E, López Nieto JM (2017) Redox and catalytic properties of promoted NiO catalysts for the oxidative dehydrogenation of ethane. J Phys Chem C 121:25132–25142 | es_ES |
dc.description.references | Skoufa Z, Heracleous E, Lemonidou AA (2015) On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. J Catal 322:118–129 | es_ES |
dc.description.references | Savova B, Loridant S, Filkova D, Millet JMM (2010) Ni-Nb-O catalysts for ethane oxidative dehydrogenation. Appl Catal A-Gen 390:148–157 | es_ES |
dc.description.references | Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biuasque G, Basset JM, Caps V (2012) Nb effect in the nickel oxide catalyzed low-temperature oxidative dehydrogenation of ethane. J Catal 285:292–303 | es_ES |
dc.description.references | Delgado D, Sanchís R, Cecilia JA, Rodríguez-Castellón E, Caballero A, Solsona B, López Nieto JM (2019) Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Cat Today 333:10–16 | es_ES |
dc.description.references | Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. J Catal 231:159–171 | es_ES |
dc.description.references | Lopez Nieto JM, Coenraads R, Dejoz A, Vazquez MI (1997) The role of metal oxides as promoters of V2O5/γ-Al2O3 catalysts in the oxidative dehydrogenation of propane. Stud Surf Sci Catal 110:443–451 | es_ES |
dc.description.references | Heracleous E, Machli M, Lemonidou AA, Vasalos IA (2005) Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. J Mol Catal A-Chem 232:29–39 | es_ES |
dc.description.references | Kung HH, Kung MC (1997) Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides. Appl Catal A-Gen 157:105–116 | es_ES |
dc.description.references | Batiot C, Hodnett BK (1996) The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. Appl Catal A-Gen 137:179–191 | es_ES |
dc.description.references | Moro-oka Y, Ozaki A (1967) The nature of adsorbed olefin on nickel oxide as revealed by a competitive reaction method. J Am Chem Soc 89:5124–5128 | es_ES |
dc.description.references | Moro-oka Y, Morikawa Y, Ozaki A (1967) Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J Catal 7:23–32 | es_ES |