- -

Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferri-Borredà, Pablo es_ES
dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.contributor.author Felix-De Castro, Antonio es_ES
dc.contributor.author Juan-Albarracín, Javier es_ES
dc.contributor.author Blanes-Selva, Vicent es_ES
dc.contributor.author Sánchez-Cuesta, Purificación es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.date.accessioned 2022-06-03T18:02:15Z
dc.date.available 2022-06-03T18:02:15Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 0933-3657 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183077
dc.description.abstract [EN] The objective of this work was to develop a predictive model to aid non-clinical dispatchers to classify emergency medical call incidents by their life-threatening level (yes/no), admissible response delay (undelayable, minutes, hours, days) and emergency system jurisdiction (emergency system/primary care) in real time. We used a total of 1 244 624 independent incidents from the Valencian emergency medical dispatch service in Spain, compiled in retrospective from 2009 to 2012, including clinical features, demographics, circumstantial factors and free text dispatcher observations. Based on them, we designed and developed DeepEMC2, a deep ensemble multitask model integrating four subnetworks: three specialized to context, clinical and text data, respectively, and another to ensemble the former. The four subnetworks are composed in turn by multi-layer perceptron modules, bidirectional long short-term memory units and a bidirectional encoding representations from transformers module. DeepEMC2 showed a macro F1-score of 0.759 in life-threatening classification, 0.576 in admissible response delay and 0.757 in emergency system jurisdiction. These results show a substantial performance increase of 12.5 %, 17.5 % and 5.1 %, respectively, with respect to the current in-house triage protocol of the Valencian emergency medical dispatch service. Besides, DeepEMC2 significantly outperformed a set of baseline machine learning models, including naive bayes, logistic regression, random forest and gradient boosting (¿ = 0.05). Hence, DeepEMC2 is able to: 1) capture information present in emergency medical calls not considered by the existing triage protocol, and 2) model complex data dependencies not feasible by the tested baseline models. Likewise, our results suggest that most of this unconsidered information is present in the free text dispatcher observations. To our knowledge, this study describes the first deep learning model undertaking emergency medical call incidents classification. Its adoption in medical dispatch centers would potentially improve emergency dispatch processes, resulting in a positive impact in patient wellbeing and health services sustainability. es_ES
dc.description.sponsorship This work has been supported by the Valencian agency for security and emergency response project A1800173041, the Ministry of Science, Innovation and Universities of Spain program FPU18/06441 and the EU Horizon 2020 project InAdvance 825750 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Artificial Intelligence in Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Medical emergencies es_ES
dc.subject Emergency medical calls es_ES
dc.subject Emergency medical dispatch es_ES
dc.subject Deep learning es_ES
dc.subject Ensemble learning es_ES
dc.subject Multitask learning es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.artmed.2021.102088 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARC/Linkage Projects/LP0775530/AU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVSRE//A1800173041/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825750/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ferri-Borredà, P.; Sáez Silvestre, C.; Felix-De Castro, A.; Juan-Albarracín, J.; Blanes-Selva, V.; Sánchez-Cuesta, P.; Garcia-Gomez, JM. (2021). Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch. Artificial Intelligence in Medicine. 117:1-13. https://doi.org/10.1016/j.artmed.2021.102088 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.artmed.2021.102088 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.identifier.pmid 34127234 es_ES
dc.relation.pasarela S\438859 es_ES
dc.contributor.funder Australian Research Council es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES es_ES
dc.contributor.funder Agencia Valenciana de Seguridad y Respuesta a las Emergencias es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem