- -

Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch

Mostrar el registro completo del ítem

Ferri-Borredà, P.; Sáez Silvestre, C.; Felix-De Castro, A.; Juan-Albarracín, J.; Blanes-Selva, V.; Sánchez-Cuesta, P.; Garcia-Gomez, JM. (2021). Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch. Artificial Intelligence in Medicine. 117:1-13. https://doi.org/10.1016/j.artmed.2021.102088

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183077

Ficheros en el ítem

Metadatos del ítem

Título: Deep ensemble multitask classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch
Autor: Ferri-Borredà, Pablo Sáez Silvestre, Carlos Felix-De Castro, Antonio Juan-Albarracín, Javier Blanes-Selva, Vicent Sánchez-Cuesta, Purificación Garcia-Gomez, Juan M
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The objective of this work was to develop a predictive model to aid non-clinical dispatchers to classify emergency medical call incidents by their life-threatening level (yes/no), admissible response delay (undelayable, ...[+]
Palabras clave: Medical emergencies , Emergency medical calls , Emergency medical dispatch , Deep learning , Ensemble learning , Multitask learning
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Artificial Intelligence in Medicine. (issn: 0933-3657 )
DOI: 10.1016/j.artmed.2021.102088
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.artmed.2021.102088
Código del Proyecto:
info:eu-repo/grantAgreement/ARC/Linkage Projects/LP0775530/AU
info:eu-repo/grantAgreement/AVSRE//A1800173041/
info:eu-repo/grantAgreement/EC/H2020/825750/EU
Agradecimientos:
This work has been supported by the Valencian agency for security and emergency response project A1800173041, the Ministry of Science, Innovation and Universities of Spain program FPU18/06441 and the EU Horizon 2020 project ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem