- -

Foliations with isolated singularities on Hirzebruch surfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Foliations with isolated singularities on Hirzebruch surfaces

Mostrar el registro completo del ítem

Galindo Pastor, C.; Monserrat Delpalillo, FJ.; Olivares, J. (2021). Foliations with isolated singularities on Hirzebruch surfaces. Forum Mathematicum. 33(6):1471-1486. https://doi.org/10.1515/forum-2021-0135

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/183574

Ficheros en el ítem

Metadatos del ítem

Título: Foliations with isolated singularities on Hirzebruch surfaces
Autor: Galindo Pastor, Carlos Monserrat Delpalillo, Francisco José Olivares, Jorge
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We study foliations F on Hirzebruch surfaces Sd and prove that, similarly to those on the projective plane, any F can be represented by a bi-homogeneous polynomial affine 1-form. In case F has isolated singularities, ...[+]
Palabras clave: Foliations on surfaces , Singularities
Derechos de uso: Reserva de todos los derechos
Fuente:
Forum Mathematicum. (issn: 0933-7741 )
DOI: 10.1515/forum-2021-0135
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/forum-2021-0135
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096446-B-C22/ES/VALORACIONES, FOLIACIONES Y CODIGOS CORRECTORES DE ERRORES CUANTICOS/
info:eu-repo/grantAgreement/MICINN//RED2018-102583-T/
info:eu-repo/grantAgreement/GVA//AICO2019-223/
info:eu-repo/grantAgreement/UJI//UJI-2018-10/
info:eu-repo/grantAgreement/CONACYT//CVU 10069/
Agradecimientos:
The first two authors are partially supported by the Spanish Government MICINN/FEDER/AEI/UE, grants PGC2018-096446-B-C22 and RED2018-102583-T, as well as by Generalitat Valenciana, grant AICO2019-223 and Universitat Jaume ...[+]
Tipo: Artículo

References

C. Araujo and M. Corrêa, Jr., On degeneracy schemes of maps of vector bundles and applications to holomorphic foliations, Math. Z. 276 (2014), no. 1–2, 505–515.

L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré, J. Éc. Polytech. 61 (1891), 35–122.

L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré. III, J. Éc. Polytech. 62 (1892), 47–180. [+]
C. Araujo and M. Corrêa, Jr., On degeneracy schemes of maps of vector bundles and applications to holomorphic foliations, Math. Z. 276 (2014), no. 1–2, 505–515.

L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré, J. Éc. Polytech. 61 (1891), 35–122.

L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré. III, J. Éc. Polytech. 62 (1892), 47–180.

M. Brunella, Birational Geometry of Foliations, IMPA Monogr. 1, Springer, Cham, 2015.

A. Campillo and M. M. Carnicer, Proximity inequalities and bounds for the degree of invariant curves by foliations of 𝐏𝐂2{\mathbf{P}^{2}_{\mathbf{C}}}, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2211–2228.

A. Campillo and J. Olivares, Polarity with respect to a foliation and Cayley–Bacharach theorems, J. Reine Angew. Math. 534 (2001), 95–118.

A. Campillo and J. Olivares, On sections with isolated singularities of twisted bundles and applications to foliations by curves, Math. Res. Lett. 10 (2003), no. 5–6, 651–658.

A. Campillo and J. Olivares, Foliations by curves uniquely determined by minimal subschemes of its singularities, J. Singul. 18 (2018), 105–113.

M. M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140 (1994), no. 2, 289–294.

V. Cavalier and D. Lehmann, On the Poincaré inequality for one-dimensional foliations, Compos. Math. 142 (2006), no. 2, 529–540.

D. Cerveau and A. Lins Neto, Holomorphic foliations in 𝐂⁢P⁢(2){{\mathbf{C}}{\rm P}(2)} having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883–903.

M. Corrêa, Jr., Darboux–Jouanolou–Ghys integrability for one-dimensional foliations on toric varieties, Bull. Sci. Math. 134 (2010), no. 7, 693–704.

M. Corrêa, Jr., A. Fernández-Pérez, G. Nonato Costa and R. Vidal Martins, Foliations by curves with curves as singularities, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1781–1805.

G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 32 (1878), 60–96, 123–144, 151–200.

E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations, Bull. Braz. Math. Soc. 34 (2003), 145–169.

A. Ferragut, C. Galindo and F. Monserrat, On the computation of Darboux first integrals of a class of planar polynomial vector fields, J. Math. Anal. Appl. 478 (2019), no. 2, 743–763.

C. Galindo and F. Monserrat, Algebraic integrability of foliations of the plane, J. Differential Equations 231 (2006), no. 2, 611–632.

C. Galindo and F. Monserrat, On the characterization of algebraically integrable plane foliations, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4557–4568.

C. Galindo and F. Monserrat, The Poincaré problem, algebraic integrability and dicritical divisors, J. Differential Equations 256 (2014), no. 11, 3614–3633.

A. García Zamora, Foliations in algebraic surfaces having a rational first integral, Publ. Mat. 41 (1997), no. 2, 357–373.

A. García Zamora, Sheaves associated to holomorphic first integrals, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 909–919.

L. Giraldo and A. J. Pan-Collantes, On the singular scheme of codimension one holomorphic foliations in ℙ3{\mathbb{P}^{3}}, Internat. J. Math. 21 (2010), no. 7, 843–858.

X. Gómez-Mont, Holomorphic foliations in ruled surfaces, Trans. Amer. Math. Soc. 312 (1989), no. 1, 179–201.

X. Gómez-Mont and G. Kempf, Stability of meromorphic vector fields in projective spaces, Comment. Math. Helv. 64 (1989), no. 3, 462–473.

R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.

J. P. Jouanolou, Hypersurfaces solutions d’une équation de Pfaff analytique, Math. Ann. 232 (1978), no. 3, 239–245.

S. L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344.

A. Laface, On linear systems of curves on rational scrolls, Geom. Dedicata 90 (2002), 127–144.

A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), no. 2, 231–266.

F. Loray and J. V. Pereira, Transversely projective foliations on surfaces: Existence of minimal form and prescription of monodromy, Internat. J. Math. 18 (2007), no. 6, 723–747.

P. Painlevé, Oeuvres de Paul Painlevé. Tome II, Éditions du Centre National de la Recherche Scientifique, Paris, 1974.

J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217–226.

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (I), J. Math. Pure. Appl. 7 (1881), 375–422.

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (II), J. Math. Pure. Appl. 8 (1882), 251–296.

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (III), J. Math. Pure. Appl. 1 (1885), 167–244.

H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (I), Rend. Circ. Mat. Palermo 5 (1891), 161–191.

H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (II), Rend. Circ. Mat. Palermo 11 (1897), 193–239.

M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math. 128 (1997), no. 3, 495–500.

M. G. Soares, Projective varieties invariant by one-dimensional foliations, Ann. of Math. (2) 152 (2000), no. 2, 369–382.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem