- -

Foliations with isolated singularities on Hirzebruch surfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Foliations with isolated singularities on Hirzebruch surfaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo Pastor, Carlos es_ES
dc.contributor.author Monserrat Delpalillo, Francisco José es_ES
dc.contributor.author Olivares, Jorge es_ES
dc.date.accessioned 2022-06-22T18:04:40Z
dc.date.available 2022-06-22T18:04:40Z
dc.date.issued 2021-10-10 es_ES
dc.identifier.issn 0933-7741 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183574
dc.description.abstract [EN] We study foliations F on Hirzebruch surfaces Sd and prove that, similarly to those on the projective plane, any F can be represented by a bi-homogeneous polynomial affine 1-form. In case F has isolated singularities, we show that, for delta = 1, the singular scheme of F does determine the foliation, with some exceptions that we describe, as is the case of foliations in the projective plane. For delta not equal 1, we prove that the singular scheme of F does not determine the foliation. However, we prove that, in most cases, two foliations F and F' given by sections s and s' have the same singular scheme if and only if s' = Phi(s), for some global endomorphism F of the tangent bundle of S-delta. es_ES
dc.description.sponsorship The first two authors are partially supported by the Spanish Government MICINN/FEDER/AEI/UE, grants PGC2018-096446-B-C22 and RED2018-102583-T, as well as by Generalitat Valenciana, grant AICO2019-223 and Universitat Jaume I, grantUJI-2018-10. The third authorwas partially supported by CONACYT: Estancias Sabaticas Vinculadas a la Consolidacion de Grupos de Investigacion, CVU 10069. es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof Forum Mathematicum es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Foliations on surfaces es_ES
dc.subject Singularities es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Foliations with isolated singularities on Hirzebruch surfaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/forum-2021-0135 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096446-B-C22/ES/VALORACIONES, FOLIACIONES Y CODIGOS CORRECTORES DE ERRORES CUANTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RED2018-102583-T/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO2019-223/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-2018-10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//CVU 10069/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Galindo Pastor, C.; Monserrat Delpalillo, FJ.; Olivares, J. (2021). Foliations with isolated singularities on Hirzebruch surfaces. Forum Mathematicum. 33(6):1471-1486. https://doi.org/10.1515/forum-2021-0135 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/forum-2021-0135 es_ES
dc.description.upvformatpinicio 1471 es_ES
dc.description.upvformatpfin 1486 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\456196 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia e Innovación es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references C. Araujo and M. Corrêa, Jr., On degeneracy schemes of maps of vector bundles and applications to holomorphic foliations, Math. Z. 276 (2014), no. 1–2, 505–515. es_ES
dc.description.references L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré, J. Éc. Polytech. 61 (1891), 35–122. es_ES
dc.description.references L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré. III, J. Éc. Polytech. 62 (1892), 47–180. es_ES
dc.description.references M. Brunella, Birational Geometry of Foliations, IMPA Monogr. 1, Springer, Cham, 2015. es_ES
dc.description.references A. Campillo and M. M. Carnicer, Proximity inequalities and bounds for the degree of invariant curves by foliations of 𝐏𝐂2{\mathbf{P}^{2}_{\mathbf{C}}}, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2211–2228. es_ES
dc.description.references A. Campillo and J. Olivares, Polarity with respect to a foliation and Cayley–Bacharach theorems, J. Reine Angew. Math. 534 (2001), 95–118. es_ES
dc.description.references A. Campillo and J. Olivares, On sections with isolated singularities of twisted bundles and applications to foliations by curves, Math. Res. Lett. 10 (2003), no. 5–6, 651–658. es_ES
dc.description.references A. Campillo and J. Olivares, Foliations by curves uniquely determined by minimal subschemes of its singularities, J. Singul. 18 (2018), 105–113. es_ES
dc.description.references M. M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140 (1994), no. 2, 289–294. es_ES
dc.description.references V. Cavalier and D. Lehmann, On the Poincaré inequality for one-dimensional foliations, Compos. Math. 142 (2006), no. 2, 529–540. es_ES
dc.description.references D. Cerveau and A. Lins Neto, Holomorphic foliations in 𝐂⁢P⁢(2){{\mathbf{C}}{\rm P}(2)} having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883–903. es_ES
dc.description.references M. Corrêa, Jr., Darboux–Jouanolou–Ghys integrability for one-dimensional foliations on toric varieties, Bull. Sci. Math. 134 (2010), no. 7, 693–704. es_ES
dc.description.references M. Corrêa, Jr., A. Fernández-Pérez, G. Nonato Costa and R. Vidal Martins, Foliations by curves with curves as singularities, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1781–1805. es_ES
dc.description.references G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 32 (1878), 60–96, 123–144, 151–200. es_ES
dc.description.references E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations, Bull. Braz. Math. Soc. 34 (2003), 145–169. es_ES
dc.description.references A. Ferragut, C. Galindo and F. Monserrat, On the computation of Darboux first integrals of a class of planar polynomial vector fields, J. Math. Anal. Appl. 478 (2019), no. 2, 743–763. es_ES
dc.description.references C. Galindo and F. Monserrat, Algebraic integrability of foliations of the plane, J. Differential Equations 231 (2006), no. 2, 611–632. es_ES
dc.description.references C. Galindo and F. Monserrat, On the characterization of algebraically integrable plane foliations, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4557–4568. es_ES
dc.description.references C. Galindo and F. Monserrat, The Poincaré problem, algebraic integrability and dicritical divisors, J. Differential Equations 256 (2014), no. 11, 3614–3633. es_ES
dc.description.references A. García Zamora, Foliations in algebraic surfaces having a rational first integral, Publ. Mat. 41 (1997), no. 2, 357–373. es_ES
dc.description.references A. García Zamora, Sheaves associated to holomorphic first integrals, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 909–919. es_ES
dc.description.references L. Giraldo and A. J. Pan-Collantes, On the singular scheme of codimension one holomorphic foliations in ℙ3{\mathbb{P}^{3}}, Internat. J. Math. 21 (2010), no. 7, 843–858. es_ES
dc.description.references X. Gómez-Mont, Holomorphic foliations in ruled surfaces, Trans. Amer. Math. Soc. 312 (1989), no. 1, 179–201. es_ES
dc.description.references X. Gómez-Mont and G. Kempf, Stability of meromorphic vector fields in projective spaces, Comment. Math. Helv. 64 (1989), no. 3, 462–473. es_ES
dc.description.references R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. es_ES
dc.description.references J. P. Jouanolou, Hypersurfaces solutions d’une équation de Pfaff analytique, Math. Ann. 232 (1978), no. 3, 239–245. es_ES
dc.description.references S. L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. es_ES
dc.description.references A. Laface, On linear systems of curves on rational scrolls, Geom. Dedicata 90 (2002), 127–144. es_ES
dc.description.references A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), no. 2, 231–266. es_ES
dc.description.references F. Loray and J. V. Pereira, Transversely projective foliations on surfaces: Existence of minimal form and prescription of monodromy, Internat. J. Math. 18 (2007), no. 6, 723–747. es_ES
dc.description.references P. Painlevé, Oeuvres de Paul Painlevé. Tome II, Éditions du Centre National de la Recherche Scientifique, Paris, 1974. es_ES
dc.description.references J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217–226. es_ES
dc.description.references H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (I), J. Math. Pure. Appl. 7 (1881), 375–422. es_ES
dc.description.references H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (II), J. Math. Pure. Appl. 8 (1882), 251–296. es_ES
dc.description.references H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (III), J. Math. Pure. Appl. 1 (1885), 167–244. es_ES
dc.description.references H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (I), Rend. Circ. Mat. Palermo 5 (1891), 161–191. es_ES
dc.description.references H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (II), Rend. Circ. Mat. Palermo 11 (1897), 193–239. es_ES
dc.description.references M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math. 128 (1997), no. 3, 495–500. es_ES
dc.description.references M. G. Soares, Projective varieties invariant by one-dimensional foliations, Ann. of Math. (2) 152 (2000), no. 2, 369–382. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem