C. Araujo and M. Corrêa, Jr., On degeneracy schemes of maps of vector bundles and applications to holomorphic foliations, Math. Z. 276 (2014), no. 1–2, 505–515.
L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré, J. Éc. Polytech. 61 (1891), 35–122.
L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré. III, J. Éc. Polytech. 62 (1892), 47–180.
[+]
C. Araujo and M. Corrêa, Jr., On degeneracy schemes of maps of vector bundles and applications to holomorphic foliations, Math. Z. 276 (2014), no. 1–2, 505–515.
L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré, J. Éc. Polytech. 61 (1891), 35–122.
L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré. III, J. Éc. Polytech. 62 (1892), 47–180.
M. Brunella, Birational Geometry of Foliations, IMPA Monogr. 1, Springer, Cham, 2015.
A. Campillo and M. M. Carnicer, Proximity inequalities and bounds for the degree of invariant curves by foliations of 𝐏𝐂2{\mathbf{P}^{2}_{\mathbf{C}}}, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2211–2228.
A. Campillo and J. Olivares, Polarity with respect to a foliation and Cayley–Bacharach theorems, J. Reine Angew. Math. 534 (2001), 95–118.
A. Campillo and J. Olivares, On sections with isolated singularities of twisted bundles and applications to foliations by curves, Math. Res. Lett. 10 (2003), no. 5–6, 651–658.
A. Campillo and J. Olivares, Foliations by curves uniquely determined by minimal subschemes of its singularities, J. Singul. 18 (2018), 105–113.
M. M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140 (1994), no. 2, 289–294.
V. Cavalier and D. Lehmann, On the Poincaré inequality for one-dimensional foliations, Compos. Math. 142 (2006), no. 2, 529–540.
D. Cerveau and A. Lins Neto, Holomorphic foliations in 𝐂P(2){{\mathbf{C}}{\rm P}(2)} having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883–903.
M. Corrêa, Jr., Darboux–Jouanolou–Ghys integrability for one-dimensional foliations on toric varieties, Bull. Sci. Math. 134 (2010), no. 7, 693–704.
M. Corrêa, Jr., A. Fernández-Pérez, G. Nonato Costa and R. Vidal Martins, Foliations by curves with curves as singularities, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1781–1805.
G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 32 (1878), 60–96, 123–144, 151–200.
E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations, Bull. Braz. Math. Soc. 34 (2003), 145–169.
A. Ferragut, C. Galindo and F. Monserrat, On the computation of Darboux first integrals of a class of planar polynomial vector fields, J. Math. Anal. Appl. 478 (2019), no. 2, 743–763.
C. Galindo and F. Monserrat, Algebraic integrability of foliations of the plane, J. Differential Equations 231 (2006), no. 2, 611–632.
C. Galindo and F. Monserrat, On the characterization of algebraically integrable plane foliations, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4557–4568.
C. Galindo and F. Monserrat, The Poincaré problem, algebraic integrability and dicritical divisors, J. Differential Equations 256 (2014), no. 11, 3614–3633.
A. García Zamora, Foliations in algebraic surfaces having a rational first integral, Publ. Mat. 41 (1997), no. 2, 357–373.
A. García Zamora, Sheaves associated to holomorphic first integrals, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 909–919.
L. Giraldo and A. J. Pan-Collantes, On the singular scheme of codimension one holomorphic foliations in ℙ3{\mathbb{P}^{3}}, Internat. J. Math. 21 (2010), no. 7, 843–858.
X. Gómez-Mont, Holomorphic foliations in ruled surfaces, Trans. Amer. Math. Soc. 312 (1989), no. 1, 179–201.
X. Gómez-Mont and G. Kempf, Stability of meromorphic vector fields in projective spaces, Comment. Math. Helv. 64 (1989), no. 3, 462–473.
R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
J. P. Jouanolou, Hypersurfaces solutions d’une équation de Pfaff analytique, Math. Ann. 232 (1978), no. 3, 239–245.
S. L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344.
A. Laface, On linear systems of curves on rational scrolls, Geom. Dedicata 90 (2002), 127–144.
A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), no. 2, 231–266.
F. Loray and J. V. Pereira, Transversely projective foliations on surfaces: Existence of minimal form and prescription of monodromy, Internat. J. Math. 18 (2007), no. 6, 723–747.
P. Painlevé, Oeuvres de Paul Painlevé. Tome II, Éditions du Centre National de la Recherche Scientifique, Paris, 1974.
J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217–226.
H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (I), J. Math. Pure. Appl. 7 (1881), 375–422.
H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (II), J. Math. Pure. Appl. 8 (1882), 251–296.
H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (III), J. Math. Pure. Appl. 1 (1885), 167–244.
H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (I), Rend. Circ. Mat. Palermo 5 (1891), 161–191.
H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (II), Rend. Circ. Mat. Palermo 11 (1897), 193–239.
M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math. 128 (1997), no. 3, 495–500.
M. G. Soares, Projective varieties invariant by one-dimensional foliations, Ann. of Math. (2) 152 (2000), no. 2, 369–382.
[-]