- -

Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ocampo-Rodríguez, Dulce Brigite es_ES
dc.contributor.author Vázquez-Rodríguez, Gabriela Alejandra es_ES
dc.contributor.author Martínez-Hernández, Sylvia es_ES
dc.contributor.author Iturbe-Acosta, Ulises es_ES
dc.contributor.author Coronel-Olivares, Claudia es_ES
dc.date.accessioned 2022-09-07T08:01:10Z
dc.date.available 2022-09-07T08:01:10Z
dc.date.issued 2022-07-29
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/185469
dc.description.abstract [EN] Conventional water treatments of disinfection have used chlorine and its derivatives to eliminate pathogenic microorganisms; however, their use generate toxic products. Pollution produced by industrialization and the growing resistance of bacteria to antibiotics have led to the search for new treatments that ensure the good physicochemical and microbiological quality of water, the elimination of emerging pollutants and to avoid by-products formation. This review compares the conventional disinfection treatments using chlorine and peracetic acid, and advanced one, among which the simultaneous disinfection using UV/Cl stand out as an alternative for wastewater treatment. The last one ensures a better quality of water, high efficiency, short process times, and low costs. es_ES
dc.description.abstract [ES] Los tratamientos convencionales de desinfección del agua han utilizado al cloro y sus derivados para la eliminación de microorganismos patógenos; sin embargo, su uso genera productos tóxicos. La contaminación producida por la industrialización y la creciente resistencia de las bacterias a antibióticos han llevado a la búsqueda de nuevos tratamientos que aseguren la buena calidad fisicoquímica y microbiológica del agua, la eliminación de contaminantes emergentes y que eviten la formación de subproductos. En la presente revisión se muestra una comparación de los tratamientos convencionales de desinfección con cloro y ácido peracético, y los avanzados, entre los cuales destaca la desinfección simultánea de UV/Cl, como alternativa para el tratamiento de aguas residuales. Este último permite asegurar una mejor calidad del recurso, alta eficiencia, tiempos reducidos y costos bajos. es_ES
dc.description.sponsorship Consejo Nacional de Ciencia y Tecnología (CONACYT México) es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del Agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Chlorine es_ES
dc.subject Peracetic acid es_ES
dc.subject Conventional disinfection es_ES
dc.subject Simultaneous disinfection es_ES
dc.subject Sequential disinfection es_ES
dc.subject Synergism es_ES
dc.subject Cloro es_ES
dc.subject Ácido peracético es_ES
dc.subject Desinfección convencional es_ES
dc.subject Desinfección simultánea es_ES
dc.subject Desinfección secuencial es_ES
dc.subject Sinergismo es_ES
dc.title Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético es_ES
dc.title.alternative Water disinfection: a review of conventional and advanced treatments with chlorine and peracetic acid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2022.17651
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ocampo-Rodríguez, DB.; Vázquez-Rodríguez, GA.; Martínez-Hernández, S.; Iturbe-Acosta, U.; Coronel-Olivares, C. (2022). Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético. Ingeniería del Agua. 26(3):185-204. https://doi.org/10.4995/ia.2022.17651 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2022.17651 es_ES
dc.description.upvformatpinicio 185 es_ES
dc.description.upvformatpfin 204 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\17651 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Adeyemo, F.E., Singh, G., Reddy, P., Bux, F., Stenström, T.A. 2019. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One, 14(5): e0216040. https://doi.org/10.1371/journal.pone.0216040 es_ES
dc.description.references Ao, X.W., Eloranta, J., Huang, C.H., Santoro, D., Sun, W.J., Lu, Z.D., Li, C. 2021. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 188, 116479. https://doi.org/10.1016/j.watres.2020.116479 es_ES
dc.description.references Beber de Souza, J., Queiroz, V.F., Jeranoski, R.F., Vidal, C.M., Cavallini, G.S. 2015. Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. International Journal of Photoenergy, 2015, 860845. https://doi.org/10.1155/2015/860845 es_ES
dc.description.references Block, P., Reimers, R., Xu, Y. 2015. Use of peracetic acid as a wastewater disinfectant to eliminate the formation of chlorinated disinfection by-products and inhibit the activity of endocrine disrupting compounds. Proceedings of the Water Environment Federation, 2015(9), 528-535, https://doi.org/10.2175/193864715819555328 es_ES
dc.description.references Cai, M., Sun, P., Zhang, L., Huang, C.H. 2017. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation. Environmental Science & Technology, 51(24), 14217-14224. https://doi.org/10.1021/acs.est.7b04694 es_ES
dc.description.references Campo, N., De Flora, C., Maffettone, R., Manoli, K., Sarathy, S., Santoro, D., Gonzalez-Olmos, R., Auset, M. 2020. Inactivation kinetics of antibiotic resistant Escherichia coli in secondary wastewater effluents by peracetic and performic acids. Water Research, 169, 115227. https://doi.org/10.1016/j.watres.2019.115227 es_ES
dc.description.references Chhetri, R.K., Klupsch, E., Andersen, H.R., Jensen, P.E. 2018. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection. Environmental Science and Pollution Research, 25(33), 32851-32859. https://doi.org/10.1007/s11356-017-8585-5 es_ES
dc.description.references Chhetri, R.K., Baun, A., Andersen, H.R. 2019. Acute toxicity and risk evaluation of the CSO disinfectants performic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite. Science of the Total Environment, 677, 1–8, https://doi.org/10.1016/j.scitotenv.2019.04.350 es_ES
dc.description.references Collivignarelli, M.C., Abbà, A., Alloisio, G., Gozio, E., Benigna, I. 2017. Disinfection in wastewater treatment plants: evaluation of effectiveness and acute toxicity effects. Sustainability, 9(10), 1704. https://doi.org/10.3390/su9101704 es_ES
dc.description.references Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S., Torretta, V. 2018. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10(1), 86. https://doi.org/10.3390/su10010086 es_ES
dc.description.references da Silva, W.P., Carlos, T.D., Cavallini, G.S., Pereira, D.H. 2020. Peracetic acid: Structural elucidation for applications in wastewater treatment. Water Research, 168, 115143. https://doi.org/10.1016/j.watres.2019.115143 es_ES
dc.description.references Dang, T.L.T., Imai, T., Le, T.V., Nguyen, D.M.K., Higuchi, T., Kanno, A., Sekine, M. 2016. Synergistic effect of pressurized carbon dioxide and sodium hypochlorite on the inactivation of Enterococcus sp. Water Research, 106, 204-213. https://doi.org/10.1016/j.watres.2016.10.003 es_ES
dc.description.references Destiani, R., Templeton, M.R. 2019. Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. AIMS Environmental Science, 6(3), 222–241. https://doi.org/10.3934/environsci.2019.3.222 es_ES
dc.description.references Drogui, P., Daghrir, R. 2015. Chlorine for water disinfection: Properties, applications and health effects. In: CO2 Sequestration, Biofuels and Depollution. (E. Lichtfouse, J. Schwarzbauer, D. Robert, eds.). Springer International Publishing, Switzerland, 1-32. es_ES
dc.description.references Dunkin, N., Weng, S., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2017. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent. Environmental Science & Technology, 51(5), 2972-2981. https://doi.org/10.1021/acs.est.6b05529 es_ES
dc.description.references Environmental Protection Agency (EPA). 1999. Alternative Disinfectants and Oxidants, Ozone Chemistry, Chapter 3.1. Environmental Protection Agency (EPA), EPA 815-R-99-014. https://www.epa.gov es_ES
dc.description.references Eramo, A., Medina, W.R.M., Fahrenfeld, N.L. 2017. Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community. Environmental Science: Water Research & Technology, 3(6), 1061-1072. https://doi.org/10.1039/C7EW00184C es_ES
dc.description.references Ersoy, Z.G., Dinc, O., Cinar, B., Gedik, S.T., Dimoglo, A. 2019. Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT Food Science and Technology, 102, 205-213. https://doi.org/10.1016/j.lwt.2018.12.041 es_ES
dc.description.references Fiorentino, A., Ferro, G., Alferez, M.C., Polo, L.M.I., Fernández, I.P., Rizzo, L. 2015. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. Journal of Photochemistry and Photobiology B: Biology, 148, 43-50. https://doi.org/10.1016/j.jphotobiol.2015.03.029 es_ES
dc.description.references Furukawa, T., Jikumaru, A., Ueno, T., Sei, K. 2017. Inactivation effect of antibiotic-resistant gene using chlorine disinfection. Water, 9(7), 547. https://doi.org/10.3390/w9070547 es_ES
dc.description.references Gao, Y.Q., Gao, N.Y., Chu, W.H., Yang, Q.L., Yin, D.Q. 2017. Kinetics and mechanistic investigation into the degradation of naproxen by a UV/chlorine process. RSC Advances, 7(53), 33627-33634. https://doi.org/10.1039/C7RA04540A es_ES
dc.description.references Gao, Z.C., Lin, Y.L., Xu, B., Xia, Y., Hu, C.Y., Zhang, T.Y., Gao, N.Y. 2019. Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 154, 199-209. https://doi.org/10.1016/j.watres.2019.02.004 es_ES
dc.description.references Gao, Z., Lin, Y., Xu, B., Xia, Y., Hu, C., Zhang, T., Qian, H., Cao, T., Gao, N. 2020. Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. Water Research, 182, 116035. https://doi.org/10.1016/j.watres.2020.116035 es_ES
dc.description.references Garg, A., Narasimman, L.M., Hogg, J., Nutter, A., Mahoney, G. 2016. Wastewater Disinfection with Peracetic Acid. Proceedings of es_ES
dc.description.references the Water Environment Federation, 2016(13), 1798-1808. https://doi.org/10.2175/193864716819706257 es_ES
dc.description.references Garg, A., Namboodiri, V., Smith, B., Al-Anazi, A., Murugesan, B., Bowman, T. 2018. Disinfection of wastewater with peracetic acid (PAA) and UV combined treatment: a pilot study. Proceedings of the Water Environment Federation, 2018(6), 76-89. https://doi.org/10.2175/193864718824828344 es_ES
dc.description.references Gilca, A.F., Teodosiu, C., Fiore, S., Musteret, C.P. 2020. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere, 259, 127476. https://doi.org/10.1016/j.chemosphere.2020.127476 es_ES
dc.description.references Gitis, V., Hankins, N. 2018. Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, 34-38. https://doi.org/10.1016/j.jwpe.2018.06.003 es_ES
dc.description.references Gryshko, I., Lugovskoy, A. 2015. Methods of microorganisms inactivation in the technological liquids. Вісник Національного технічного університету України Київський політехнічний інститут. Серія: Машинобудування, 3, 165-171. http://nbuv.gov.ua/UJRN/VKPI_mash_2015_3_25 es_ES
dc.description.references Hassaballah, A.H., Nyitrai, J., Hart, C.H., Dai, N., Sassoubre, L.M. 2019. A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection. Environmental Science: Water Research & Technology, 5(8), 1453-1463. https://doi.org/10.1039/C9EW00341J es_ES
dc.description.references Hassaballah, A.H., Bhatt, T., Nyitrai, J., Dai, N., Sassoubre, L. 2020. Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. Environmental Science: Water Research & Technology, 6(1), 197-209. https://doi.org/10.1039/C9EW00837C es_ES
dc.description.references Henao, L.D., Cascio, M., Turolla, A., Antonelli, M. 2018a. Effect of suspended solids on peracetic acid decay and bacterial inactivation kinetics: Experimental assessment and definition of predictive models. Science of the Total Environment, 643, 936-945. https://doi.org/10.1016/j.scitotenv.2018.06.219 es_ES
dc.description.references Henao, L.D., Turolla, A., Antonelli, M. 2018b. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review, Chemosphere, 213, 25-40. https://doi.org/10.1016/j.chemosphere.2018.09.005 es_ES
dc.description.references Hollman, J., Dominic, J.A., Achari, G. 2020. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2. Chemosphere, 248, 125911. https://doi.org/10.1016/j.chemosphere.2020.125911 es_ES
dc.description.references How, Z.T., Kristiana, I., Busetti, F., Linge, K.L., Joll, C.A. 2017. Organic chloramines in chlorine-based disinfected water systems: a critical review. Journal of Environmental Sciences, 58, 2-18. https://doi.org/10.1016/j.jes.2017.05.025 es_ES
dc.description.references Hua, Z., Li, D., Wu, Z., Wang, D., Cui, Y., Huang, X., Fang, J., An, T. 2021. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide, Water Research, 188, 116549. https://doi.org/10.1016/j.watres.2020.116549 es_ES
dc.description.references Ikehata, K., Li, Y., Komor, A.T., Gibson, G.W. 2018. Free Chlorine Disinfection of Full-Scale MBR Effluent to Achieve 5-Log Virus Inactivation. Water Environment Research, 90(7), 623-633. https://doi.org/10.2175/106143017X15131012153103 es_ES
dc.description.references Kampf, G. 2018a. Peracetic Acid. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 63-98. es_ES
dc.description.references Kampf, G. 2018b. Sodium Hypochlorite. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 161-210. es_ES
dc.description.references Kibbee, R., Örmeci, B. 2020. Peracetic acid (PAA) and low-pressure ultraviolet (LPUV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently. Water Research, 183, 116048. https://doi.org/10.1016/j.watres.2020.116048 es_ES
dc.description.references Kinani, S., Richard, B., Souissi, Y., Bouchonnet, S. 2012. Analysis of inorganic chloramines in water. TrAC Trends in Analytical Chemistry, 33, 55-67. https://doi.org/10.1016/j.trac.2011.10.006 es_ES
dc.description.references Kingsley, D.H., Fay, J.P., Calci, K., Pouillot, R., Woods, J., Chen, H., Niemira, B.A., Van, D.J.M. 2017. Evaluation of chlorine treatment levels for inactivation of human norovirus and MS2 bacteriophage during sewage treatment. Applied and Environmental Microbiology, 83(23), e01270-17. https://doi.org/10.1128/AEM.01270-17 es_ES
dc.description.references Kong, J., Lu, Y., Ren, Y., Chen, Z., Chen, M. 2021. The virus removal in UV irradiation, ozonation and chlorination. Water Cycle, 2(2021), 23-31. https://doi.org/10.1016/j.watcyc.2021.05.001 es_ES
dc.description.references Köse, H., Yapar, N. 2017. The comparison of various disinfectants efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish Journal of Medical Sciences, 47(4), 1287-1294. https://doi.org/10.3906/sag-1605-88 es_ES
dc.description.references Kozari, A., Paloglou, A., Voutsa, D. 2020. Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. Science of The Total Environment, 700, 134449. https://doi.org/10.1016/j.scitotenv.2019.134449 es_ES
dc.description.references Lee, W., Westerhoff, P. 2009. Formation of organic chloramines during water disinfection–chlorination versus chloramination. Water research, 43(8), 2233-2239. https://doi.org/10.1016/j.watres.2009.02.009 es_ES
dc.description.references Li, T., Jiang, Y., An, X., Liu, H., Hu, C., Qu, J. 2016. Transformation of humic acid and halogenated byproduct formation in UVchlorine processes. Water Research, 102, 421-427. https://doi.org/10.1016/j.watres.2016.06.051 es_ES
dc.description.references Li, Y., Yang, M., Zhang, X., Jiang, J., Liu, J., Yau, C.F., Graham, N.J.D., Li, X. 2017. Two-step chlorination: a new approach to disinfection of a primary sewage effluent. Water Research, 108, 339-347. https://doi.org/10.1016/j.watres.2016.11.019 es_ES
dc.description.references Li, G.Q., Huo, Z.Y., Wu, Q.Y., Lu, Y., Hu, H.Y. 2018. Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Science of The Total Environment, 639, 1233-1240. https://doi.org/10.1016/j.scitotenv.2018.05.240 es_ES
dc.description.references Lin, H., Zhu, X., Wang, Y., Yu, X. 2017. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems. Journal of Water and Health, 15(2), 218-227. https://doi.org/10.2166/wh.2017.141 es_ES
dc.description.references Luukkonen, T., Pehkonen, S.O. 2016. Peracids in water treatment: A critical review. Critical Reviews in Environmental Science and Technology, 47(1), 1-39. https://doi.org/10.1080/10643389.2016.1272343 es_ES
dc.description.references Luo, L.W., Wu, Y.H., Yu, T., Wang, Y.H., Chen, G.Q., Tong, X., Bai, Y., Xu, C., Wang, H.B., Ikuno, N., Hu, H.Y. 2021. Evaluating method and potential risk of chlorine-resistant bacteria (CRB): A review. Water Research, 188, 116474. https://doi.org/10.1016/j.watres.2020.116474 es_ES
dc.description.references Luongo, G., Previtera, L., Ladhari, A., Fabio, G.D., Zarrelli, A. 2020. Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules, 25(10), 2294. https://doi.org/10.3390/molecules25102294 es_ES
dc.description.references Ma, J.W., Huang, B.S., Hsu, C.W., Peng, C.W., Cheng, M.L., Kao, J.Y., Way, T.D., Yin, H.C., Wang, S.S. 2017. Efficacy and safety evaluation of a chlorine dioxide solution. International Journal of Environmental Research and Public Health, 14(3), 329. https://doi.org/10.3390/ijerph14030329 es_ES
dc.description.references Macêdo, L.P.R., Dornelas, A.S.P., Vieira, M.M., de Jesus, F.J.S., Sarmento, R.A., Cavallini, G.S. 2019. Comparative ecotoxicological evaluation of peracetic acid and the active chlorine of calcium hypochlorite: Use of Dugesia tigrina as a bioindicator of environmental pollution. Chemosphere, 233, 273-281. https://doi.org/10.1016/j.chemosphere.2019.05.286 es_ES
dc.description.references Malvestiti, J.A., Dantas R.F. 2019. Influence of industrial contamination in municipal secondary effluent disinfection by UV/H2O2. Environmental Science and Pollution Research, 26(13), 13286-13298. https://doi.org/10.1007/s11356-019-04705-1 es_ES
dc.description.references Manoli, K., Sarathy, S., Maffettone, R., Santoro, D. 2019. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water Research, 153, 251-262. https://doi.org/10.1016/j.watres.2019.01.022 es_ES
dc.description.references Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Rahisuddin, Changani, F., Yousefi, M., Ahmadi, S., Vambol, V. 2020. Chlorination disinfection by-products in Municipal drinking water–A review. Journal of Cleaner Production, 273, 123159. https://doi.org/10.1016/j.jclepro.2020.123159 es_ES
dc.description.references McFadden, M., Loconsole, J., Schockling, A.J., Nerenberg, R., Pavissich, J.P. 2017. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH. Science of the Total Environment, 599, 533-539. https://doi.org/10.1016/j.scitotenv.2017.04.179 es_ES
dc.description.references Medeiros, R.C., Daniel, L.A. 2015. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater. Acta Scientiarum Technology, 37(2), 203-209. https://doi.org/10.4025/actascitechnol.v37i2.24950 es_ES
dc.description.references Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U. 2018. Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Research, 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042 es_ES
dc.description.references Miranda, A.C., Lepretti, M., Rizzo, L., Caputo, I., Vaiano, V., Sacco, O., Lopes, W.S., Sannino, D. 2016. Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation. Science of the Total Environment, 554, 1-6. https://doi.org/10.1016/j.scitotenv.2016.02.189 es_ES
dc.description.references Mounaouer, B., Abdennaceur, H. 2016. Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. https://doi.org/10.1007/s11356-016-7173-4 es_ES
dc.description.references Muniesa, A., Escobar, D.J., Silva, N., Henríquez, P., Bustos, P., Perez, A.M., Mardones, F.O. 2019. Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis. Preventive Veterinary Medicine, 167, 196-201. https://doi.org/10.1016/j.prevetmed.2018.03.006 es_ES
dc.description.references Murray, A., Goldman, J., Sarathy, S., Hilts, B., Bell, K., Santoro, D., Broomfield, C.O. 2016. Disinfection of a municipal wastewater secondary effluent with a combination of ultraviolet irradiation and peracetic acid. Proceedings of the Water Environment Federation, 10, 2053-2064. https://doi.org/10.2175/193864716819707751 es_ES
dc.description.references Nie, X.B., Li, Z.H., Long, Y.N., He, P.P., Xu, C. 2017. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine. Chemosphere, 177, 7-14. https://doi.org/10.1016/j.chemosphere.2017.02.142 es_ES
dc.description.references Ofori, I., Maddila, S., Lin, J., Jonnalagadda, S.B. 2018. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water: the kinetics and mechanism. Journal of Water Process Engineering, 26, 46-54. https://doi.org/10.1016/j.jwpe.2018.09.001 es_ES
dc.description.references Phattarapattamawong, S., Chareewan, N., Polprasert, C. 2021. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Science of the Total Environment, 755, 142696. https://doi.org/10.1016/j.scitotenv.2020.142696 es_ES
dc.description.references Quartaroli, L., Cardoso, B.H., de Paula, R.G., da Silva, G.H.R. 2018. Wastewater chlorination for reuse, an alternative for small communities. Water Environment Research, 90(12), 2100-2105. https://doi.org/10.2175/106143017X15131012188231 es_ES
dc.description.references Ragazzo, P., Chiucchini, N., Piccolo, V., Spadolini, M., Carrer, S., Zanon, F., Gehr, R. 2020. Wastewater Disinfection: Long-Term Laboratory and Full-Scale Studies on Performic Acid in Comparison with Peracetic Acid and Chlorine. Water Research, 184, 116-169. https://doi.org/10.1016/j.watres.2020.116169 es_ES
dc.description.references Rattanakul, S., Oguma, K., Takizawa, S. 2015. Sequential and simultaneous applications of UV and chlorine for adenovirus inactivation. Food and Environmental Virology, 7(3), 295-304. https://doi.org/10.1007/s12560-015-9202-8 es_ES
dc.description.references Sun, P., Zhang, T., Mejia, T.B., Zhang, R., Cai, M., Huang, C.H. 2018. Rapid disinfection by peracetic acid combined with UV irradiation. Environmental science & technology letters, 5(6), 400-404. https://doi.org/10.1021/acs.estlett.8b00249 es_ES
dc.description.references Valero, P., Mosteo, R., Ormad, M.P., Lázaro, L., Ovelleiro, J.L. 2015. Inactivation of Enterococcus sp. by conventional and advanced oxidation processes in synthetic treated urban wastewater. Ozone: Science & Engineering, 37(5), 467-475. https://doi.org/10.1080/01919512.2015.1042572 es_ES
dc.description.references Wang, C., Ying, Z., Ma, M., Huo, M., Yang, W. 2019. Degradation of micropollutants by UV–chlorine treatment in reclaimed water: pH effects, formation of disinfectant byproducts, and toxicity assay. Water, 11(12), 2639. https://doi.org/10.3390/w11122639 es_ES
dc.description.references Wang, Y., Couet, M., Gutierrez, L., Allard, Sé., Croué, J.P. 2020. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. Water Research, 172, 115463. https://doi.org/10.1016/j.watres.2019.115463 es_ES
dc.description.references Wawryk, N., Wu, D., Zhou, A., Moe, B., Li, X.F. 2020. Disinfection: A trade-off between microbial and chemical risks. In: A New Paradigm for Environmental Chemistry and Toxicology (G. Jiang, X. Li, eds.), Springer Nature Singapore, Gateway East, Singapore, 211-228. es_ES
dc.description.references Wen, G., Xu, X., Huang, T., Zhu, H., Ma, J. 2017. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. Water Research, 125, 132-140. https://doi.org/10.1016/j.aguas.2017.08.038 es_ES
dc.description.references Weng, S., Dunkin, N., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2018. Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. Journal of environmental management, 221, 1-9. https://doi.org/10.1016/j.jenvman.2018.04.064 es_ES
dc.description.references Wolfe, R.L., Ward, N.R., Olson, B.H. 1984. Inorganic chloramines as drinking water disinfectants: a review. Journal American Water Works Association, 76(5), 74-88. https://doi.org/10.1002/j.1551-8833.1984.tb05337.x es_ES
dc.description.references Yin, K., Deng, Y., Liu, C., He, Q., Wei, Y., Chen, S., Liu, T., Luo, S. 2018. Kinetics, Pathways and Toxicity Evaluation of Neonicotinoid Insecticides Degradation via UV/Chlorine Process. Chemical Engineering Journal, 346, 298-306. https://doi.org/10.1016/j.cej.2018.03.168 es_ES
dc.description.references Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Science of the Total Environment, 512, 125-132. https://doi.org/10.1016/j.scitotenv.2015.01.028 es_ES
dc.description.references Zhang, C., Brown, P.J.B., Miles, R.J., White, T.A., Grant, D.G., Stalla, D., Hu, Z. 2018. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. Water Research, 149, 640-649. https://doi.org/10.1016/j.watres.2018.10.062 es_ES
dc.description.references Zhang, C., Brown, P.J., Hu, Z. 2019a. Higher functionality of bacterial plasmid DNA in water after peracetic acid disinfection compared with chlorination. Science of The Total Environment, 685, 419-427. https://doi.org/10.1016/j.scitotenv.2019.05.074 es_ES
dc.description.references Zhang, Z., Chuang, Y.H., Szczuka, A., Ishida, K.P., Roback, S., Plumlee, M.H., Mitch, W.A. 2019b. Pilot-scale evaluation of oxidant speciation, 1, 4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Research, 164, 114939. https://doi.org/10.1016/j.watres.2019.114939 es_ES
dc.description.references Zhang, K., San, Y., Cao, C., Zhang, T., Cen, C., Zhou, X. 2020a. Optimising the measurement of peracetic acid to assess its degradation during drinking water disinfection. Environmental Science and Pollution Research, 27(27), 34135-34146. https://doi.org/10.1007/s11356020-09505-6 es_ES
dc.description.references Zhang, T., Wang, T., Mejia, T.B., Kissel, J.R., Xie, X., Huang, C.H. 2020b. Inactivation of bacteria by peracetic acid combined with uv irradiation: mechanism and optimization. Environmental Science & Technology, 54(15), 9652-9661. https://doi.org/10.1021/acs.est.0c02424 es_ES
dc.description.references Zheng, J., Su, C., Zhou, J., Xu, L., Qian, Y., Chen, H. 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chemical Engineering Journal, 317, 309-316. https://doi.org/10.1016/j.cej.2017.02.076 es_ES
dc.description.references Zhong, Y., Gan, W., Du, Y., Huang, H., Wu, Q., Xiang, Y., Yang, X. 2019. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2. Water Research, 162, 471-481. https://doi.org/10.1016/j.watres.2019.07.012 es_ES
dc.description.references Zhou, S., Wu, Y., Zhu, S., Sun, J., Bu, L., Dionysiou, D.D. 2020. Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. Water Research, 172, 115508. https://doi.org/10.1016/j.watres.2020.115508 es_ES
dc.description.references Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environmental Science and Pollution Research, 22(9), 7037-7044. https://doi.org/10.1007/s11356-014-3919-z es_ES
dc.description.references Ziemba, C., Larivé, O., Deck, S., Huisman, T., Morgenroth, E. 2019. Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system. Water Research X, 2, 100020. https://doi.org/10.1016/j.wroa.2018.100020 es_ES
dc.description.references Zou, H., Tang, H. 2019. Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water, 11(2), 258. https://doi.org/10.3390/w11020258 es_ES
dc.description.references Zyara, A.M., Torvinen, E., Veijalainen, A.M., Heinonen-Tanski, H. 2016. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection. Journal of Water and Health, 14(4), 640-649. https://doi.org/10.2166/wh.2016.144 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem