Mostrar el registro sencillo del ítem
dc.contributor.author | Ocampo-Rodríguez, Dulce Brigite | es_ES |
dc.contributor.author | Vázquez-Rodríguez, Gabriela Alejandra | es_ES |
dc.contributor.author | Martínez-Hernández, Sylvia | es_ES |
dc.contributor.author | Iturbe-Acosta, Ulises | es_ES |
dc.contributor.author | Coronel-Olivares, Claudia | es_ES |
dc.date.accessioned | 2022-09-07T08:01:10Z | |
dc.date.available | 2022-09-07T08:01:10Z | |
dc.date.issued | 2022-07-29 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/185469 | |
dc.description.abstract | [EN] Conventional water treatments of disinfection have used chlorine and its derivatives to eliminate pathogenic microorganisms; however, their use generate toxic products. Pollution produced by industrialization and the growing resistance of bacteria to antibiotics have led to the search for new treatments that ensure the good physicochemical and microbiological quality of water, the elimination of emerging pollutants and to avoid by-products formation. This review compares the conventional disinfection treatments using chlorine and peracetic acid, and advanced one, among which the simultaneous disinfection using UV/Cl stand out as an alternative for wastewater treatment. The last one ensures a better quality of water, high efficiency, short process times, and low costs. | es_ES |
dc.description.abstract | [ES] Los tratamientos convencionales de desinfección del agua han utilizado al cloro y sus derivados para la eliminación de microorganismos patógenos; sin embargo, su uso genera productos tóxicos. La contaminación producida por la industrialización y la creciente resistencia de las bacterias a antibióticos han llevado a la búsqueda de nuevos tratamientos que aseguren la buena calidad fisicoquímica y microbiológica del agua, la eliminación de contaminantes emergentes y que eviten la formación de subproductos. En la presente revisión se muestra una comparación de los tratamientos convencionales de desinfección con cloro y ácido peracético, y los avanzados, entre los cuales destaca la desinfección simultánea de UV/Cl, como alternativa para el tratamiento de aguas residuales. Este último permite asegurar una mejor calidad del recurso, alta eficiencia, tiempos reducidos y costos bajos. | es_ES |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología (CONACYT México) | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Chlorine | es_ES |
dc.subject | Peracetic acid | es_ES |
dc.subject | Conventional disinfection | es_ES |
dc.subject | Simultaneous disinfection | es_ES |
dc.subject | Sequential disinfection | es_ES |
dc.subject | Synergism | es_ES |
dc.subject | Cloro | es_ES |
dc.subject | Ácido peracético | es_ES |
dc.subject | Desinfección convencional | es_ES |
dc.subject | Desinfección simultánea | es_ES |
dc.subject | Desinfección secuencial | es_ES |
dc.subject | Sinergismo | es_ES |
dc.title | Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético | es_ES |
dc.title.alternative | Water disinfection: a review of conventional and advanced treatments with chlorine and peracetic acid | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2022.17651 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ocampo-Rodríguez, DB.; Vázquez-Rodríguez, GA.; Martínez-Hernández, S.; Iturbe-Acosta, U.; Coronel-Olivares, C. (2022). Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético. Ingeniería del Agua. 26(3):185-204. https://doi.org/10.4995/ia.2022.17651 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2022.17651 | es_ES |
dc.description.upvformatpinicio | 185 | es_ES |
dc.description.upvformatpfin | 204 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\17651 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Adeyemo, F.E., Singh, G., Reddy, P., Bux, F., Stenström, T.A. 2019. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One, 14(5): e0216040. https://doi.org/10.1371/journal.pone.0216040 | es_ES |
dc.description.references | Ao, X.W., Eloranta, J., Huang, C.H., Santoro, D., Sun, W.J., Lu, Z.D., Li, C. 2021. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 188, 116479. https://doi.org/10.1016/j.watres.2020.116479 | es_ES |
dc.description.references | Beber de Souza, J., Queiroz, V.F., Jeranoski, R.F., Vidal, C.M., Cavallini, G.S. 2015. Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. International Journal of Photoenergy, 2015, 860845. https://doi.org/10.1155/2015/860845 | es_ES |
dc.description.references | Block, P., Reimers, R., Xu, Y. 2015. Use of peracetic acid as a wastewater disinfectant to eliminate the formation of chlorinated disinfection by-products and inhibit the activity of endocrine disrupting compounds. Proceedings of the Water Environment Federation, 2015(9), 528-535, https://doi.org/10.2175/193864715819555328 | es_ES |
dc.description.references | Cai, M., Sun, P., Zhang, L., Huang, C.H. 2017. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation. Environmental Science & Technology, 51(24), 14217-14224. https://doi.org/10.1021/acs.est.7b04694 | es_ES |
dc.description.references | Campo, N., De Flora, C., Maffettone, R., Manoli, K., Sarathy, S., Santoro, D., Gonzalez-Olmos, R., Auset, M. 2020. Inactivation kinetics of antibiotic resistant Escherichia coli in secondary wastewater effluents by peracetic and performic acids. Water Research, 169, 115227. https://doi.org/10.1016/j.watres.2019.115227 | es_ES |
dc.description.references | Chhetri, R.K., Klupsch, E., Andersen, H.R., Jensen, P.E. 2018. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection. Environmental Science and Pollution Research, 25(33), 32851-32859. https://doi.org/10.1007/s11356-017-8585-5 | es_ES |
dc.description.references | Chhetri, R.K., Baun, A., Andersen, H.R. 2019. Acute toxicity and risk evaluation of the CSO disinfectants performic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite. Science of the Total Environment, 677, 1–8, https://doi.org/10.1016/j.scitotenv.2019.04.350 | es_ES |
dc.description.references | Collivignarelli, M.C., Abbà, A., Alloisio, G., Gozio, E., Benigna, I. 2017. Disinfection in wastewater treatment plants: evaluation of effectiveness and acute toxicity effects. Sustainability, 9(10), 1704. https://doi.org/10.3390/su9101704 | es_ES |
dc.description.references | Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S., Torretta, V. 2018. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10(1), 86. https://doi.org/10.3390/su10010086 | es_ES |
dc.description.references | da Silva, W.P., Carlos, T.D., Cavallini, G.S., Pereira, D.H. 2020. Peracetic acid: Structural elucidation for applications in wastewater treatment. Water Research, 168, 115143. https://doi.org/10.1016/j.watres.2019.115143 | es_ES |
dc.description.references | Dang, T.L.T., Imai, T., Le, T.V., Nguyen, D.M.K., Higuchi, T., Kanno, A., Sekine, M. 2016. Synergistic effect of pressurized carbon dioxide and sodium hypochlorite on the inactivation of Enterococcus sp. Water Research, 106, 204-213. https://doi.org/10.1016/j.watres.2016.10.003 | es_ES |
dc.description.references | Destiani, R., Templeton, M.R. 2019. Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. AIMS Environmental Science, 6(3), 222–241. https://doi.org/10.3934/environsci.2019.3.222 | es_ES |
dc.description.references | Drogui, P., Daghrir, R. 2015. Chlorine for water disinfection: Properties, applications and health effects. In: CO2 Sequestration, Biofuels and Depollution. (E. Lichtfouse, J. Schwarzbauer, D. Robert, eds.). Springer International Publishing, Switzerland, 1-32. | es_ES |
dc.description.references | Dunkin, N., Weng, S., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2017. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent. Environmental Science & Technology, 51(5), 2972-2981. https://doi.org/10.1021/acs.est.6b05529 | es_ES |
dc.description.references | Environmental Protection Agency (EPA). 1999. Alternative Disinfectants and Oxidants, Ozone Chemistry, Chapter 3.1. Environmental Protection Agency (EPA), EPA 815-R-99-014. https://www.epa.gov | es_ES |
dc.description.references | Eramo, A., Medina, W.R.M., Fahrenfeld, N.L. 2017. Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community. Environmental Science: Water Research & Technology, 3(6), 1061-1072. https://doi.org/10.1039/C7EW00184C | es_ES |
dc.description.references | Ersoy, Z.G., Dinc, O., Cinar, B., Gedik, S.T., Dimoglo, A. 2019. Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT Food Science and Technology, 102, 205-213. https://doi.org/10.1016/j.lwt.2018.12.041 | es_ES |
dc.description.references | Fiorentino, A., Ferro, G., Alferez, M.C., Polo, L.M.I., Fernández, I.P., Rizzo, L. 2015. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. Journal of Photochemistry and Photobiology B: Biology, 148, 43-50. https://doi.org/10.1016/j.jphotobiol.2015.03.029 | es_ES |
dc.description.references | Furukawa, T., Jikumaru, A., Ueno, T., Sei, K. 2017. Inactivation effect of antibiotic-resistant gene using chlorine disinfection. Water, 9(7), 547. https://doi.org/10.3390/w9070547 | es_ES |
dc.description.references | Gao, Y.Q., Gao, N.Y., Chu, W.H., Yang, Q.L., Yin, D.Q. 2017. Kinetics and mechanistic investigation into the degradation of naproxen by a UV/chlorine process. RSC Advances, 7(53), 33627-33634. https://doi.org/10.1039/C7RA04540A | es_ES |
dc.description.references | Gao, Z.C., Lin, Y.L., Xu, B., Xia, Y., Hu, C.Y., Zhang, T.Y., Gao, N.Y. 2019. Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 154, 199-209. https://doi.org/10.1016/j.watres.2019.02.004 | es_ES |
dc.description.references | Gao, Z., Lin, Y., Xu, B., Xia, Y., Hu, C., Zhang, T., Qian, H., Cao, T., Gao, N. 2020. Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. Water Research, 182, 116035. https://doi.org/10.1016/j.watres.2020.116035 | es_ES |
dc.description.references | Garg, A., Narasimman, L.M., Hogg, J., Nutter, A., Mahoney, G. 2016. Wastewater Disinfection with Peracetic Acid. Proceedings of | es_ES |
dc.description.references | the Water Environment Federation, 2016(13), 1798-1808. https://doi.org/10.2175/193864716819706257 | es_ES |
dc.description.references | Garg, A., Namboodiri, V., Smith, B., Al-Anazi, A., Murugesan, B., Bowman, T. 2018. Disinfection of wastewater with peracetic acid (PAA) and UV combined treatment: a pilot study. Proceedings of the Water Environment Federation, 2018(6), 76-89. https://doi.org/10.2175/193864718824828344 | es_ES |
dc.description.references | Gilca, A.F., Teodosiu, C., Fiore, S., Musteret, C.P. 2020. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere, 259, 127476. https://doi.org/10.1016/j.chemosphere.2020.127476 | es_ES |
dc.description.references | Gitis, V., Hankins, N. 2018. Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, 34-38. https://doi.org/10.1016/j.jwpe.2018.06.003 | es_ES |
dc.description.references | Gryshko, I., Lugovskoy, A. 2015. Methods of microorganisms inactivation in the technological liquids. Вісник Національного технічного університету України Київський політехнічний інститут. Серія: Машинобудування, 3, 165-171. http://nbuv.gov.ua/UJRN/VKPI_mash_2015_3_25 | es_ES |
dc.description.references | Hassaballah, A.H., Nyitrai, J., Hart, C.H., Dai, N., Sassoubre, L.M. 2019. A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection. Environmental Science: Water Research & Technology, 5(8), 1453-1463. https://doi.org/10.1039/C9EW00341J | es_ES |
dc.description.references | Hassaballah, A.H., Bhatt, T., Nyitrai, J., Dai, N., Sassoubre, L. 2020. Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. Environmental Science: Water Research & Technology, 6(1), 197-209. https://doi.org/10.1039/C9EW00837C | es_ES |
dc.description.references | Henao, L.D., Cascio, M., Turolla, A., Antonelli, M. 2018a. Effect of suspended solids on peracetic acid decay and bacterial inactivation kinetics: Experimental assessment and definition of predictive models. Science of the Total Environment, 643, 936-945. https://doi.org/10.1016/j.scitotenv.2018.06.219 | es_ES |
dc.description.references | Henao, L.D., Turolla, A., Antonelli, M. 2018b. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review, Chemosphere, 213, 25-40. https://doi.org/10.1016/j.chemosphere.2018.09.005 | es_ES |
dc.description.references | Hollman, J., Dominic, J.A., Achari, G. 2020. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2. Chemosphere, 248, 125911. https://doi.org/10.1016/j.chemosphere.2020.125911 | es_ES |
dc.description.references | How, Z.T., Kristiana, I., Busetti, F., Linge, K.L., Joll, C.A. 2017. Organic chloramines in chlorine-based disinfected water systems: a critical review. Journal of Environmental Sciences, 58, 2-18. https://doi.org/10.1016/j.jes.2017.05.025 | es_ES |
dc.description.references | Hua, Z., Li, D., Wu, Z., Wang, D., Cui, Y., Huang, X., Fang, J., An, T. 2021. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide, Water Research, 188, 116549. https://doi.org/10.1016/j.watres.2020.116549 | es_ES |
dc.description.references | Ikehata, K., Li, Y., Komor, A.T., Gibson, G.W. 2018. Free Chlorine Disinfection of Full-Scale MBR Effluent to Achieve 5-Log Virus Inactivation. Water Environment Research, 90(7), 623-633. https://doi.org/10.2175/106143017X15131012153103 | es_ES |
dc.description.references | Kampf, G. 2018a. Peracetic Acid. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 63-98. | es_ES |
dc.description.references | Kampf, G. 2018b. Sodium Hypochlorite. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 161-210. | es_ES |
dc.description.references | Kibbee, R., Örmeci, B. 2020. Peracetic acid (PAA) and low-pressure ultraviolet (LPUV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently. Water Research, 183, 116048. https://doi.org/10.1016/j.watres.2020.116048 | es_ES |
dc.description.references | Kinani, S., Richard, B., Souissi, Y., Bouchonnet, S. 2012. Analysis of inorganic chloramines in water. TrAC Trends in Analytical Chemistry, 33, 55-67. https://doi.org/10.1016/j.trac.2011.10.006 | es_ES |
dc.description.references | Kingsley, D.H., Fay, J.P., Calci, K., Pouillot, R., Woods, J., Chen, H., Niemira, B.A., Van, D.J.M. 2017. Evaluation of chlorine treatment levels for inactivation of human norovirus and MS2 bacteriophage during sewage treatment. Applied and Environmental Microbiology, 83(23), e01270-17. https://doi.org/10.1128/AEM.01270-17 | es_ES |
dc.description.references | Kong, J., Lu, Y., Ren, Y., Chen, Z., Chen, M. 2021. The virus removal in UV irradiation, ozonation and chlorination. Water Cycle, 2(2021), 23-31. https://doi.org/10.1016/j.watcyc.2021.05.001 | es_ES |
dc.description.references | Köse, H., Yapar, N. 2017. The comparison of various disinfectants efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish Journal of Medical Sciences, 47(4), 1287-1294. https://doi.org/10.3906/sag-1605-88 | es_ES |
dc.description.references | Kozari, A., Paloglou, A., Voutsa, D. 2020. Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. Science of The Total Environment, 700, 134449. https://doi.org/10.1016/j.scitotenv.2019.134449 | es_ES |
dc.description.references | Lee, W., Westerhoff, P. 2009. Formation of organic chloramines during water disinfection–chlorination versus chloramination. Water research, 43(8), 2233-2239. https://doi.org/10.1016/j.watres.2009.02.009 | es_ES |
dc.description.references | Li, T., Jiang, Y., An, X., Liu, H., Hu, C., Qu, J. 2016. Transformation of humic acid and halogenated byproduct formation in UVchlorine processes. Water Research, 102, 421-427. https://doi.org/10.1016/j.watres.2016.06.051 | es_ES |
dc.description.references | Li, Y., Yang, M., Zhang, X., Jiang, J., Liu, J., Yau, C.F., Graham, N.J.D., Li, X. 2017. Two-step chlorination: a new approach to disinfection of a primary sewage effluent. Water Research, 108, 339-347. https://doi.org/10.1016/j.watres.2016.11.019 | es_ES |
dc.description.references | Li, G.Q., Huo, Z.Y., Wu, Q.Y., Lu, Y., Hu, H.Y. 2018. Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Science of The Total Environment, 639, 1233-1240. https://doi.org/10.1016/j.scitotenv.2018.05.240 | es_ES |
dc.description.references | Lin, H., Zhu, X., Wang, Y., Yu, X. 2017. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems. Journal of Water and Health, 15(2), 218-227. https://doi.org/10.2166/wh.2017.141 | es_ES |
dc.description.references | Luukkonen, T., Pehkonen, S.O. 2016. Peracids in water treatment: A critical review. Critical Reviews in Environmental Science and Technology, 47(1), 1-39. https://doi.org/10.1080/10643389.2016.1272343 | es_ES |
dc.description.references | Luo, L.W., Wu, Y.H., Yu, T., Wang, Y.H., Chen, G.Q., Tong, X., Bai, Y., Xu, C., Wang, H.B., Ikuno, N., Hu, H.Y. 2021. Evaluating method and potential risk of chlorine-resistant bacteria (CRB): A review. Water Research, 188, 116474. https://doi.org/10.1016/j.watres.2020.116474 | es_ES |
dc.description.references | Luongo, G., Previtera, L., Ladhari, A., Fabio, G.D., Zarrelli, A. 2020. Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules, 25(10), 2294. https://doi.org/10.3390/molecules25102294 | es_ES |
dc.description.references | Ma, J.W., Huang, B.S., Hsu, C.W., Peng, C.W., Cheng, M.L., Kao, J.Y., Way, T.D., Yin, H.C., Wang, S.S. 2017. Efficacy and safety evaluation of a chlorine dioxide solution. International Journal of Environmental Research and Public Health, 14(3), 329. https://doi.org/10.3390/ijerph14030329 | es_ES |
dc.description.references | Macêdo, L.P.R., Dornelas, A.S.P., Vieira, M.M., de Jesus, F.J.S., Sarmento, R.A., Cavallini, G.S. 2019. Comparative ecotoxicological evaluation of peracetic acid and the active chlorine of calcium hypochlorite: Use of Dugesia tigrina as a bioindicator of environmental pollution. Chemosphere, 233, 273-281. https://doi.org/10.1016/j.chemosphere.2019.05.286 | es_ES |
dc.description.references | Malvestiti, J.A., Dantas R.F. 2019. Influence of industrial contamination in municipal secondary effluent disinfection by UV/H2O2. Environmental Science and Pollution Research, 26(13), 13286-13298. https://doi.org/10.1007/s11356-019-04705-1 | es_ES |
dc.description.references | Manoli, K., Sarathy, S., Maffettone, R., Santoro, D. 2019. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water Research, 153, 251-262. https://doi.org/10.1016/j.watres.2019.01.022 | es_ES |
dc.description.references | Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Rahisuddin, Changani, F., Yousefi, M., Ahmadi, S., Vambol, V. 2020. Chlorination disinfection by-products in Municipal drinking water–A review. Journal of Cleaner Production, 273, 123159. https://doi.org/10.1016/j.jclepro.2020.123159 | es_ES |
dc.description.references | McFadden, M., Loconsole, J., Schockling, A.J., Nerenberg, R., Pavissich, J.P. 2017. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH. Science of the Total Environment, 599, 533-539. https://doi.org/10.1016/j.scitotenv.2017.04.179 | es_ES |
dc.description.references | Medeiros, R.C., Daniel, L.A. 2015. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater. Acta Scientiarum Technology, 37(2), 203-209. https://doi.org/10.4025/actascitechnol.v37i2.24950 | es_ES |
dc.description.references | Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U. 2018. Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Research, 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042 | es_ES |
dc.description.references | Miranda, A.C., Lepretti, M., Rizzo, L., Caputo, I., Vaiano, V., Sacco, O., Lopes, W.S., Sannino, D. 2016. Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation. Science of the Total Environment, 554, 1-6. https://doi.org/10.1016/j.scitotenv.2016.02.189 | es_ES |
dc.description.references | Mounaouer, B., Abdennaceur, H. 2016. Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. https://doi.org/10.1007/s11356-016-7173-4 | es_ES |
dc.description.references | Muniesa, A., Escobar, D.J., Silva, N., Henríquez, P., Bustos, P., Perez, A.M., Mardones, F.O. 2019. Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis. Preventive Veterinary Medicine, 167, 196-201. https://doi.org/10.1016/j.prevetmed.2018.03.006 | es_ES |
dc.description.references | Murray, A., Goldman, J., Sarathy, S., Hilts, B., Bell, K., Santoro, D., Broomfield, C.O. 2016. Disinfection of a municipal wastewater secondary effluent with a combination of ultraviolet irradiation and peracetic acid. Proceedings of the Water Environment Federation, 10, 2053-2064. https://doi.org/10.2175/193864716819707751 | es_ES |
dc.description.references | Nie, X.B., Li, Z.H., Long, Y.N., He, P.P., Xu, C. 2017. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine. Chemosphere, 177, 7-14. https://doi.org/10.1016/j.chemosphere.2017.02.142 | es_ES |
dc.description.references | Ofori, I., Maddila, S., Lin, J., Jonnalagadda, S.B. 2018. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water: the kinetics and mechanism. Journal of Water Process Engineering, 26, 46-54. https://doi.org/10.1016/j.jwpe.2018.09.001 | es_ES |
dc.description.references | Phattarapattamawong, S., Chareewan, N., Polprasert, C. 2021. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Science of the Total Environment, 755, 142696. https://doi.org/10.1016/j.scitotenv.2020.142696 | es_ES |
dc.description.references | Quartaroli, L., Cardoso, B.H., de Paula, R.G., da Silva, G.H.R. 2018. Wastewater chlorination for reuse, an alternative for small communities. Water Environment Research, 90(12), 2100-2105. https://doi.org/10.2175/106143017X15131012188231 | es_ES |
dc.description.references | Ragazzo, P., Chiucchini, N., Piccolo, V., Spadolini, M., Carrer, S., Zanon, F., Gehr, R. 2020. Wastewater Disinfection: Long-Term Laboratory and Full-Scale Studies on Performic Acid in Comparison with Peracetic Acid and Chlorine. Water Research, 184, 116-169. https://doi.org/10.1016/j.watres.2020.116169 | es_ES |
dc.description.references | Rattanakul, S., Oguma, K., Takizawa, S. 2015. Sequential and simultaneous applications of UV and chlorine for adenovirus inactivation. Food and Environmental Virology, 7(3), 295-304. https://doi.org/10.1007/s12560-015-9202-8 | es_ES |
dc.description.references | Sun, P., Zhang, T., Mejia, T.B., Zhang, R., Cai, M., Huang, C.H. 2018. Rapid disinfection by peracetic acid combined with UV irradiation. Environmental science & technology letters, 5(6), 400-404. https://doi.org/10.1021/acs.estlett.8b00249 | es_ES |
dc.description.references | Valero, P., Mosteo, R., Ormad, M.P., Lázaro, L., Ovelleiro, J.L. 2015. Inactivation of Enterococcus sp. by conventional and advanced oxidation processes in synthetic treated urban wastewater. Ozone: Science & Engineering, 37(5), 467-475. https://doi.org/10.1080/01919512.2015.1042572 | es_ES |
dc.description.references | Wang, C., Ying, Z., Ma, M., Huo, M., Yang, W. 2019. Degradation of micropollutants by UV–chlorine treatment in reclaimed water: pH effects, formation of disinfectant byproducts, and toxicity assay. Water, 11(12), 2639. https://doi.org/10.3390/w11122639 | es_ES |
dc.description.references | Wang, Y., Couet, M., Gutierrez, L., Allard, Sé., Croué, J.P. 2020. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. Water Research, 172, 115463. https://doi.org/10.1016/j.watres.2019.115463 | es_ES |
dc.description.references | Wawryk, N., Wu, D., Zhou, A., Moe, B., Li, X.F. 2020. Disinfection: A trade-off between microbial and chemical risks. In: A New Paradigm for Environmental Chemistry and Toxicology (G. Jiang, X. Li, eds.), Springer Nature Singapore, Gateway East, Singapore, 211-228. | es_ES |
dc.description.references | Wen, G., Xu, X., Huang, T., Zhu, H., Ma, J. 2017. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. Water Research, 125, 132-140. https://doi.org/10.1016/j.aguas.2017.08.038 | es_ES |
dc.description.references | Weng, S., Dunkin, N., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2018. Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. Journal of environmental management, 221, 1-9. https://doi.org/10.1016/j.jenvman.2018.04.064 | es_ES |
dc.description.references | Wolfe, R.L., Ward, N.R., Olson, B.H. 1984. Inorganic chloramines as drinking water disinfectants: a review. Journal American Water Works Association, 76(5), 74-88. https://doi.org/10.1002/j.1551-8833.1984.tb05337.x | es_ES |
dc.description.references | Yin, K., Deng, Y., Liu, C., He, Q., Wei, Y., Chen, S., Liu, T., Luo, S. 2018. Kinetics, Pathways and Toxicity Evaluation of Neonicotinoid Insecticides Degradation via UV/Chlorine Process. Chemical Engineering Journal, 346, 298-306. https://doi.org/10.1016/j.cej.2018.03.168 | es_ES |
dc.description.references | Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Science of the Total Environment, 512, 125-132. https://doi.org/10.1016/j.scitotenv.2015.01.028 | es_ES |
dc.description.references | Zhang, C., Brown, P.J.B., Miles, R.J., White, T.A., Grant, D.G., Stalla, D., Hu, Z. 2018. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. Water Research, 149, 640-649. https://doi.org/10.1016/j.watres.2018.10.062 | es_ES |
dc.description.references | Zhang, C., Brown, P.J., Hu, Z. 2019a. Higher functionality of bacterial plasmid DNA in water after peracetic acid disinfection compared with chlorination. Science of The Total Environment, 685, 419-427. https://doi.org/10.1016/j.scitotenv.2019.05.074 | es_ES |
dc.description.references | Zhang, Z., Chuang, Y.H., Szczuka, A., Ishida, K.P., Roback, S., Plumlee, M.H., Mitch, W.A. 2019b. Pilot-scale evaluation of oxidant speciation, 1, 4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Research, 164, 114939. https://doi.org/10.1016/j.watres.2019.114939 | es_ES |
dc.description.references | Zhang, K., San, Y., Cao, C., Zhang, T., Cen, C., Zhou, X. 2020a. Optimising the measurement of peracetic acid to assess its degradation during drinking water disinfection. Environmental Science and Pollution Research, 27(27), 34135-34146. https://doi.org/10.1007/s11356020-09505-6 | es_ES |
dc.description.references | Zhang, T., Wang, T., Mejia, T.B., Kissel, J.R., Xie, X., Huang, C.H. 2020b. Inactivation of bacteria by peracetic acid combined with uv irradiation: mechanism and optimization. Environmental Science & Technology, 54(15), 9652-9661. https://doi.org/10.1021/acs.est.0c02424 | es_ES |
dc.description.references | Zheng, J., Su, C., Zhou, J., Xu, L., Qian, Y., Chen, H. 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chemical Engineering Journal, 317, 309-316. https://doi.org/10.1016/j.cej.2017.02.076 | es_ES |
dc.description.references | Zhong, Y., Gan, W., Du, Y., Huang, H., Wu, Q., Xiang, Y., Yang, X. 2019. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2. Water Research, 162, 471-481. https://doi.org/10.1016/j.watres.2019.07.012 | es_ES |
dc.description.references | Zhou, S., Wu, Y., Zhu, S., Sun, J., Bu, L., Dionysiou, D.D. 2020. Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. Water Research, 172, 115508. https://doi.org/10.1016/j.watres.2020.115508 | es_ES |
dc.description.references | Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environmental Science and Pollution Research, 22(9), 7037-7044. https://doi.org/10.1007/s11356-014-3919-z | es_ES |
dc.description.references | Ziemba, C., Larivé, O., Deck, S., Huisman, T., Morgenroth, E. 2019. Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system. Water Research X, 2, 100020. https://doi.org/10.1016/j.wroa.2018.100020 | es_ES |
dc.description.references | Zou, H., Tang, H. 2019. Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water, 11(2), 258. https://doi.org/10.3390/w11020258 | es_ES |
dc.description.references | Zyara, A.M., Torvinen, E., Veijalainen, A.M., Heinonen-Tanski, H. 2016. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection. Journal of Water and Health, 14(4), 640-649. https://doi.org/10.2166/wh.2016.144 | es_ES |