- -

Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético

Mostrar el registro completo del ítem

Ocampo-Rodríguez, DB.; Vázquez-Rodríguez, GA.; Martínez-Hernández, S.; Iturbe-Acosta, U.; Coronel-Olivares, C. (2022). Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético. Ingeniería del Agua. 26(3):185-204. https://doi.org/10.4995/ia.2022.17651

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185469

Ficheros en el ítem

Metadatos del ítem

Título: Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético
Otro titulo: Water disinfection: a review of conventional and advanced treatments with chlorine and peracetic acid
Autor: Ocampo-Rodríguez, Dulce Brigite Vázquez-Rodríguez, Gabriela Alejandra Martínez-Hernández, Sylvia Iturbe-Acosta, Ulises Coronel-Olivares, Claudia
Fecha difusión:
Resumen:
[EN] Conventional water treatments of disinfection have used chlorine and its derivatives to eliminate pathogenic microorganisms; however, their use generate toxic products. Pollution produced by industrialization and the ...[+]


[ES] Los tratamientos convencionales de desinfección del agua han utilizado al cloro y sus derivados para la eliminación de microorganismos patógenos; sin embargo, su uso genera productos tóxicos. La contaminación producida ...[+]
Palabras clave: Chlorine , Peracetic acid , Conventional disinfection , Simultaneous disinfection , Sequential disinfection , Synergism , Cloro , Ácido peracético , Desinfección convencional , Desinfección simultánea , Desinfección secuencial , Sinergismo
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2022.17651
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2022.17651
Agradecimientos:
Consejo Nacional de Ciencia y Tecnología (CONACYT México)
Tipo: Artículo

References

Adeyemo, F.E., Singh, G., Reddy, P., Bux, F., Stenström, T.A. 2019. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One, 14(5): e0216040. https://doi.org/10.1371/journal.pone.0216040

Ao, X.W., Eloranta, J., Huang, C.H., Santoro, D., Sun, W.J., Lu, Z.D., Li, C. 2021. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 188, 116479. https://doi.org/10.1016/j.watres.2020.116479

Beber de Souza, J., Queiroz, V.F., Jeranoski, R.F., Vidal, C.M., Cavallini, G.S. 2015. Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. International Journal of Photoenergy, 2015, 860845. https://doi.org/10.1155/2015/860845 [+]
Adeyemo, F.E., Singh, G., Reddy, P., Bux, F., Stenström, T.A. 2019. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One, 14(5): e0216040. https://doi.org/10.1371/journal.pone.0216040

Ao, X.W., Eloranta, J., Huang, C.H., Santoro, D., Sun, W.J., Lu, Z.D., Li, C. 2021. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 188, 116479. https://doi.org/10.1016/j.watres.2020.116479

Beber de Souza, J., Queiroz, V.F., Jeranoski, R.F., Vidal, C.M., Cavallini, G.S. 2015. Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. International Journal of Photoenergy, 2015, 860845. https://doi.org/10.1155/2015/860845

Block, P., Reimers, R., Xu, Y. 2015. Use of peracetic acid as a wastewater disinfectant to eliminate the formation of chlorinated disinfection by-products and inhibit the activity of endocrine disrupting compounds. Proceedings of the Water Environment Federation, 2015(9), 528-535, https://doi.org/10.2175/193864715819555328

Cai, M., Sun, P., Zhang, L., Huang, C.H. 2017. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation. Environmental Science & Technology, 51(24), 14217-14224. https://doi.org/10.1021/acs.est.7b04694

Campo, N., De Flora, C., Maffettone, R., Manoli, K., Sarathy, S., Santoro, D., Gonzalez-Olmos, R., Auset, M. 2020. Inactivation kinetics of antibiotic resistant Escherichia coli in secondary wastewater effluents by peracetic and performic acids. Water Research, 169, 115227. https://doi.org/10.1016/j.watres.2019.115227

Chhetri, R.K., Klupsch, E., Andersen, H.R., Jensen, P.E. 2018. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection. Environmental Science and Pollution Research, 25(33), 32851-32859. https://doi.org/10.1007/s11356-017-8585-5

Chhetri, R.K., Baun, A., Andersen, H.R. 2019. Acute toxicity and risk evaluation of the CSO disinfectants performic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite. Science of the Total Environment, 677, 1–8, https://doi.org/10.1016/j.scitotenv.2019.04.350

Collivignarelli, M.C., Abbà, A., Alloisio, G., Gozio, E., Benigna, I. 2017. Disinfection in wastewater treatment plants: evaluation of effectiveness and acute toxicity effects. Sustainability, 9(10), 1704. https://doi.org/10.3390/su9101704

Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S., Torretta, V. 2018. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10(1), 86. https://doi.org/10.3390/su10010086

da Silva, W.P., Carlos, T.D., Cavallini, G.S., Pereira, D.H. 2020. Peracetic acid: Structural elucidation for applications in wastewater treatment. Water Research, 168, 115143. https://doi.org/10.1016/j.watres.2019.115143

Dang, T.L.T., Imai, T., Le, T.V., Nguyen, D.M.K., Higuchi, T., Kanno, A., Sekine, M. 2016. Synergistic effect of pressurized carbon dioxide and sodium hypochlorite on the inactivation of Enterococcus sp. Water Research, 106, 204-213. https://doi.org/10.1016/j.watres.2016.10.003

Destiani, R., Templeton, M.R. 2019. Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. AIMS Environmental Science, 6(3), 222–241. https://doi.org/10.3934/environsci.2019.3.222

Drogui, P., Daghrir, R. 2015. Chlorine for water disinfection: Properties, applications and health effects. In: CO2 Sequestration, Biofuels and Depollution. (E. Lichtfouse, J. Schwarzbauer, D. Robert, eds.). Springer International Publishing, Switzerland, 1-32.

Dunkin, N., Weng, S., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2017. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent. Environmental Science & Technology, 51(5), 2972-2981. https://doi.org/10.1021/acs.est.6b05529

Environmental Protection Agency (EPA). 1999. Alternative Disinfectants and Oxidants, Ozone Chemistry, Chapter 3.1. Environmental Protection Agency (EPA), EPA 815-R-99-014. https://www.epa.gov

Eramo, A., Medina, W.R.M., Fahrenfeld, N.L. 2017. Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community. Environmental Science: Water Research & Technology, 3(6), 1061-1072. https://doi.org/10.1039/C7EW00184C

Ersoy, Z.G., Dinc, O., Cinar, B., Gedik, S.T., Dimoglo, A. 2019. Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT Food Science and Technology, 102, 205-213. https://doi.org/10.1016/j.lwt.2018.12.041

Fiorentino, A., Ferro, G., Alferez, M.C., Polo, L.M.I., Fernández, I.P., Rizzo, L. 2015. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. Journal of Photochemistry and Photobiology B: Biology, 148, 43-50. https://doi.org/10.1016/j.jphotobiol.2015.03.029

Furukawa, T., Jikumaru, A., Ueno, T., Sei, K. 2017. Inactivation effect of antibiotic-resistant gene using chlorine disinfection. Water, 9(7), 547. https://doi.org/10.3390/w9070547

Gao, Y.Q., Gao, N.Y., Chu, W.H., Yang, Q.L., Yin, D.Q. 2017. Kinetics and mechanistic investigation into the degradation of naproxen by a UV/chlorine process. RSC Advances, 7(53), 33627-33634. https://doi.org/10.1039/C7RA04540A

Gao, Z.C., Lin, Y.L., Xu, B., Xia, Y., Hu, C.Y., Zhang, T.Y., Gao, N.Y. 2019. Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 154, 199-209. https://doi.org/10.1016/j.watres.2019.02.004

Gao, Z., Lin, Y., Xu, B., Xia, Y., Hu, C., Zhang, T., Qian, H., Cao, T., Gao, N. 2020. Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. Water Research, 182, 116035. https://doi.org/10.1016/j.watres.2020.116035

Garg, A., Narasimman, L.M., Hogg, J., Nutter, A., Mahoney, G. 2016. Wastewater Disinfection with Peracetic Acid. Proceedings of

the Water Environment Federation, 2016(13), 1798-1808. https://doi.org/10.2175/193864716819706257

Garg, A., Namboodiri, V., Smith, B., Al-Anazi, A., Murugesan, B., Bowman, T. 2018. Disinfection of wastewater with peracetic acid (PAA) and UV combined treatment: a pilot study. Proceedings of the Water Environment Federation, 2018(6), 76-89. https://doi.org/10.2175/193864718824828344

Gilca, A.F., Teodosiu, C., Fiore, S., Musteret, C.P. 2020. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere, 259, 127476. https://doi.org/10.1016/j.chemosphere.2020.127476

Gitis, V., Hankins, N. 2018. Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, 34-38. https://doi.org/10.1016/j.jwpe.2018.06.003

Gryshko, I., Lugovskoy, A. 2015. Methods of microorganisms inactivation in the technological liquids. Вісник Національного технічного університету України Київський політехнічний інститут. Серія: Машинобудування, 3, 165-171. http://nbuv.gov.ua/UJRN/VKPI_mash_2015_3_25

Hassaballah, A.H., Nyitrai, J., Hart, C.H., Dai, N., Sassoubre, L.M. 2019. A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection. Environmental Science: Water Research & Technology, 5(8), 1453-1463. https://doi.org/10.1039/C9EW00341J

Hassaballah, A.H., Bhatt, T., Nyitrai, J., Dai, N., Sassoubre, L. 2020. Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. Environmental Science: Water Research & Technology, 6(1), 197-209. https://doi.org/10.1039/C9EW00837C

Henao, L.D., Cascio, M., Turolla, A., Antonelli, M. 2018a. Effect of suspended solids on peracetic acid decay and bacterial inactivation kinetics: Experimental assessment and definition of predictive models. Science of the Total Environment, 643, 936-945. https://doi.org/10.1016/j.scitotenv.2018.06.219

Henao, L.D., Turolla, A., Antonelli, M. 2018b. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review, Chemosphere, 213, 25-40. https://doi.org/10.1016/j.chemosphere.2018.09.005

Hollman, J., Dominic, J.A., Achari, G. 2020. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2. Chemosphere, 248, 125911. https://doi.org/10.1016/j.chemosphere.2020.125911

How, Z.T., Kristiana, I., Busetti, F., Linge, K.L., Joll, C.A. 2017. Organic chloramines in chlorine-based disinfected water systems: a critical review. Journal of Environmental Sciences, 58, 2-18. https://doi.org/10.1016/j.jes.2017.05.025

Hua, Z., Li, D., Wu, Z., Wang, D., Cui, Y., Huang, X., Fang, J., An, T. 2021. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide, Water Research, 188, 116549. https://doi.org/10.1016/j.watres.2020.116549

Ikehata, K., Li, Y., Komor, A.T., Gibson, G.W. 2018. Free Chlorine Disinfection of Full-Scale MBR Effluent to Achieve 5-Log Virus Inactivation. Water Environment Research, 90(7), 623-633. https://doi.org/10.2175/106143017X15131012153103

Kampf, G. 2018a. Peracetic Acid. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 63-98.

Kampf, G. 2018b. Sodium Hypochlorite. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 161-210.

Kibbee, R., Örmeci, B. 2020. Peracetic acid (PAA) and low-pressure ultraviolet (LPUV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently. Water Research, 183, 116048. https://doi.org/10.1016/j.watres.2020.116048

Kinani, S., Richard, B., Souissi, Y., Bouchonnet, S. 2012. Analysis of inorganic chloramines in water. TrAC Trends in Analytical Chemistry, 33, 55-67. https://doi.org/10.1016/j.trac.2011.10.006

Kingsley, D.H., Fay, J.P., Calci, K., Pouillot, R., Woods, J., Chen, H., Niemira, B.A., Van, D.J.M. 2017. Evaluation of chlorine treatment levels for inactivation of human norovirus and MS2 bacteriophage during sewage treatment. Applied and Environmental Microbiology, 83(23), e01270-17. https://doi.org/10.1128/AEM.01270-17

Kong, J., Lu, Y., Ren, Y., Chen, Z., Chen, M. 2021. The virus removal in UV irradiation, ozonation and chlorination. Water Cycle, 2(2021), 23-31. https://doi.org/10.1016/j.watcyc.2021.05.001

Köse, H., Yapar, N. 2017. The comparison of various disinfectants efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish Journal of Medical Sciences, 47(4), 1287-1294. https://doi.org/10.3906/sag-1605-88

Kozari, A., Paloglou, A., Voutsa, D. 2020. Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. Science of The Total Environment, 700, 134449. https://doi.org/10.1016/j.scitotenv.2019.134449

Lee, W., Westerhoff, P. 2009. Formation of organic chloramines during water disinfection–chlorination versus chloramination. Water research, 43(8), 2233-2239. https://doi.org/10.1016/j.watres.2009.02.009

Li, T., Jiang, Y., An, X., Liu, H., Hu, C., Qu, J. 2016. Transformation of humic acid and halogenated byproduct formation in UVchlorine processes. Water Research, 102, 421-427. https://doi.org/10.1016/j.watres.2016.06.051

Li, Y., Yang, M., Zhang, X., Jiang, J., Liu, J., Yau, C.F., Graham, N.J.D., Li, X. 2017. Two-step chlorination: a new approach to disinfection of a primary sewage effluent. Water Research, 108, 339-347. https://doi.org/10.1016/j.watres.2016.11.019

Li, G.Q., Huo, Z.Y., Wu, Q.Y., Lu, Y., Hu, H.Y. 2018. Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Science of The Total Environment, 639, 1233-1240. https://doi.org/10.1016/j.scitotenv.2018.05.240

Lin, H., Zhu, X., Wang, Y., Yu, X. 2017. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems. Journal of Water and Health, 15(2), 218-227. https://doi.org/10.2166/wh.2017.141

Luukkonen, T., Pehkonen, S.O. 2016. Peracids in water treatment: A critical review. Critical Reviews in Environmental Science and Technology, 47(1), 1-39. https://doi.org/10.1080/10643389.2016.1272343

Luo, L.W., Wu, Y.H., Yu, T., Wang, Y.H., Chen, G.Q., Tong, X., Bai, Y., Xu, C., Wang, H.B., Ikuno, N., Hu, H.Y. 2021. Evaluating method and potential risk of chlorine-resistant bacteria (CRB): A review. Water Research, 188, 116474. https://doi.org/10.1016/j.watres.2020.116474

Luongo, G., Previtera, L., Ladhari, A., Fabio, G.D., Zarrelli, A. 2020. Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules, 25(10), 2294. https://doi.org/10.3390/molecules25102294

Ma, J.W., Huang, B.S., Hsu, C.W., Peng, C.W., Cheng, M.L., Kao, J.Y., Way, T.D., Yin, H.C., Wang, S.S. 2017. Efficacy and safety evaluation of a chlorine dioxide solution. International Journal of Environmental Research and Public Health, 14(3), 329. https://doi.org/10.3390/ijerph14030329

Macêdo, L.P.R., Dornelas, A.S.P., Vieira, M.M., de Jesus, F.J.S., Sarmento, R.A., Cavallini, G.S. 2019. Comparative ecotoxicological evaluation of peracetic acid and the active chlorine of calcium hypochlorite: Use of Dugesia tigrina as a bioindicator of environmental pollution. Chemosphere, 233, 273-281. https://doi.org/10.1016/j.chemosphere.2019.05.286

Malvestiti, J.A., Dantas R.F. 2019. Influence of industrial contamination in municipal secondary effluent disinfection by UV/H2O2. Environmental Science and Pollution Research, 26(13), 13286-13298. https://doi.org/10.1007/s11356-019-04705-1

Manoli, K., Sarathy, S., Maffettone, R., Santoro, D. 2019. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water Research, 153, 251-262. https://doi.org/10.1016/j.watres.2019.01.022

Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Rahisuddin, Changani, F., Yousefi, M., Ahmadi, S., Vambol, V. 2020. Chlorination disinfection by-products in Municipal drinking water–A review. Journal of Cleaner Production, 273, 123159. https://doi.org/10.1016/j.jclepro.2020.123159

McFadden, M., Loconsole, J., Schockling, A.J., Nerenberg, R., Pavissich, J.P. 2017. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH. Science of the Total Environment, 599, 533-539. https://doi.org/10.1016/j.scitotenv.2017.04.179

Medeiros, R.C., Daniel, L.A. 2015. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater. Acta Scientiarum Technology, 37(2), 203-209. https://doi.org/10.4025/actascitechnol.v37i2.24950

Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U. 2018. Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Research, 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042

Miranda, A.C., Lepretti, M., Rizzo, L., Caputo, I., Vaiano, V., Sacco, O., Lopes, W.S., Sannino, D. 2016. Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation. Science of the Total Environment, 554, 1-6. https://doi.org/10.1016/j.scitotenv.2016.02.189

Mounaouer, B., Abdennaceur, H. 2016. Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. https://doi.org/10.1007/s11356-016-7173-4

Muniesa, A., Escobar, D.J., Silva, N., Henríquez, P., Bustos, P., Perez, A.M., Mardones, F.O. 2019. Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis. Preventive Veterinary Medicine, 167, 196-201. https://doi.org/10.1016/j.prevetmed.2018.03.006

Murray, A., Goldman, J., Sarathy, S., Hilts, B., Bell, K., Santoro, D., Broomfield, C.O. 2016. Disinfection of a municipal wastewater secondary effluent with a combination of ultraviolet irradiation and peracetic acid. Proceedings of the Water Environment Federation, 10, 2053-2064. https://doi.org/10.2175/193864716819707751

Nie, X.B., Li, Z.H., Long, Y.N., He, P.P., Xu, C. 2017. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine. Chemosphere, 177, 7-14. https://doi.org/10.1016/j.chemosphere.2017.02.142

Ofori, I., Maddila, S., Lin, J., Jonnalagadda, S.B. 2018. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water: the kinetics and mechanism. Journal of Water Process Engineering, 26, 46-54. https://doi.org/10.1016/j.jwpe.2018.09.001

Phattarapattamawong, S., Chareewan, N., Polprasert, C. 2021. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Science of the Total Environment, 755, 142696. https://doi.org/10.1016/j.scitotenv.2020.142696

Quartaroli, L., Cardoso, B.H., de Paula, R.G., da Silva, G.H.R. 2018. Wastewater chlorination for reuse, an alternative for small communities. Water Environment Research, 90(12), 2100-2105. https://doi.org/10.2175/106143017X15131012188231

Ragazzo, P., Chiucchini, N., Piccolo, V., Spadolini, M., Carrer, S., Zanon, F., Gehr, R. 2020. Wastewater Disinfection: Long-Term Laboratory and Full-Scale Studies on Performic Acid in Comparison with Peracetic Acid and Chlorine. Water Research, 184, 116-169. https://doi.org/10.1016/j.watres.2020.116169

Rattanakul, S., Oguma, K., Takizawa, S. 2015. Sequential and simultaneous applications of UV and chlorine for adenovirus inactivation. Food and Environmental Virology, 7(3), 295-304. https://doi.org/10.1007/s12560-015-9202-8

Sun, P., Zhang, T., Mejia, T.B., Zhang, R., Cai, M., Huang, C.H. 2018. Rapid disinfection by peracetic acid combined with UV irradiation. Environmental science & technology letters, 5(6), 400-404. https://doi.org/10.1021/acs.estlett.8b00249

Valero, P., Mosteo, R., Ormad, M.P., Lázaro, L., Ovelleiro, J.L. 2015. Inactivation of Enterococcus sp. by conventional and advanced oxidation processes in synthetic treated urban wastewater. Ozone: Science & Engineering, 37(5), 467-475. https://doi.org/10.1080/01919512.2015.1042572

Wang, C., Ying, Z., Ma, M., Huo, M., Yang, W. 2019. Degradation of micropollutants by UV–chlorine treatment in reclaimed water: pH effects, formation of disinfectant byproducts, and toxicity assay. Water, 11(12), 2639. https://doi.org/10.3390/w11122639

Wang, Y., Couet, M., Gutierrez, L., Allard, Sé., Croué, J.P. 2020. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. Water Research, 172, 115463. https://doi.org/10.1016/j.watres.2019.115463

Wawryk, N., Wu, D., Zhou, A., Moe, B., Li, X.F. 2020. Disinfection: A trade-off between microbial and chemical risks. In: A New Paradigm for Environmental Chemistry and Toxicology (G. Jiang, X. Li, eds.), Springer Nature Singapore, Gateway East, Singapore, 211-228.

Wen, G., Xu, X., Huang, T., Zhu, H., Ma, J. 2017. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. Water Research, 125, 132-140. https://doi.org/10.1016/j.aguas.2017.08.038

Weng, S., Dunkin, N., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2018. Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. Journal of environmental management, 221, 1-9. https://doi.org/10.1016/j.jenvman.2018.04.064

Wolfe, R.L., Ward, N.R., Olson, B.H. 1984. Inorganic chloramines as drinking water disinfectants: a review. Journal American Water Works Association, 76(5), 74-88. https://doi.org/10.1002/j.1551-8833.1984.tb05337.x

Yin, K., Deng, Y., Liu, C., He, Q., Wei, Y., Chen, S., Liu, T., Luo, S. 2018. Kinetics, Pathways and Toxicity Evaluation of Neonicotinoid Insecticides Degradation via UV/Chlorine Process. Chemical Engineering Journal, 346, 298-306. https://doi.org/10.1016/j.cej.2018.03.168

Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Science of the Total Environment, 512, 125-132. https://doi.org/10.1016/j.scitotenv.2015.01.028

Zhang, C., Brown, P.J.B., Miles, R.J., White, T.A., Grant, D.G., Stalla, D., Hu, Z. 2018. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. Water Research, 149, 640-649. https://doi.org/10.1016/j.watres.2018.10.062

Zhang, C., Brown, P.J., Hu, Z. 2019a. Higher functionality of bacterial plasmid DNA in water after peracetic acid disinfection compared with chlorination. Science of The Total Environment, 685, 419-427. https://doi.org/10.1016/j.scitotenv.2019.05.074

Zhang, Z., Chuang, Y.H., Szczuka, A., Ishida, K.P., Roback, S., Plumlee, M.H., Mitch, W.A. 2019b. Pilot-scale evaluation of oxidant speciation, 1, 4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Research, 164, 114939. https://doi.org/10.1016/j.watres.2019.114939

Zhang, K., San, Y., Cao, C., Zhang, T., Cen, C., Zhou, X. 2020a. Optimising the measurement of peracetic acid to assess its degradation during drinking water disinfection. Environmental Science and Pollution Research, 27(27), 34135-34146. https://doi.org/10.1007/s11356020-09505-6

Zhang, T., Wang, T., Mejia, T.B., Kissel, J.R., Xie, X., Huang, C.H. 2020b. Inactivation of bacteria by peracetic acid combined with uv irradiation: mechanism and optimization. Environmental Science & Technology, 54(15), 9652-9661. https://doi.org/10.1021/acs.est.0c02424

Zheng, J., Su, C., Zhou, J., Xu, L., Qian, Y., Chen, H. 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chemical Engineering Journal, 317, 309-316. https://doi.org/10.1016/j.cej.2017.02.076

Zhong, Y., Gan, W., Du, Y., Huang, H., Wu, Q., Xiang, Y., Yang, X. 2019. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2. Water Research, 162, 471-481. https://doi.org/10.1016/j.watres.2019.07.012

Zhou, S., Wu, Y., Zhu, S., Sun, J., Bu, L., Dionysiou, D.D. 2020. Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. Water Research, 172, 115508. https://doi.org/10.1016/j.watres.2020.115508

Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environmental Science and Pollution Research, 22(9), 7037-7044. https://doi.org/10.1007/s11356-014-3919-z

Ziemba, C., Larivé, O., Deck, S., Huisman, T., Morgenroth, E. 2019. Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system. Water Research X, 2, 100020. https://doi.org/10.1016/j.wroa.2018.100020

Zou, H., Tang, H. 2019. Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water, 11(2), 258. https://doi.org/10.3390/w11020258

Zyara, A.M., Torvinen, E., Veijalainen, A.M., Heinonen-Tanski, H. 2016. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection. Journal of Water and Health, 14(4), 640-649. https://doi.org/10.2166/wh.2016.144

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem