Adeyemo, F.E., Singh, G., Reddy, P., Bux, F., Stenström, T.A. 2019. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One, 14(5): e0216040. https://doi.org/10.1371/journal.pone.0216040
Ao, X.W., Eloranta, J., Huang, C.H., Santoro, D., Sun, W.J., Lu, Z.D., Li, C. 2021. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 188, 116479. https://doi.org/10.1016/j.watres.2020.116479
Beber de Souza, J., Queiroz, V.F., Jeranoski, R.F., Vidal, C.M., Cavallini, G.S. 2015. Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. International Journal of Photoenergy, 2015, 860845. https://doi.org/10.1155/2015/860845
[+]
Adeyemo, F.E., Singh, G., Reddy, P., Bux, F., Stenström, T.A. 2019. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One, 14(5): e0216040. https://doi.org/10.1371/journal.pone.0216040
Ao, X.W., Eloranta, J., Huang, C.H., Santoro, D., Sun, W.J., Lu, Z.D., Li, C. 2021. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 188, 116479. https://doi.org/10.1016/j.watres.2020.116479
Beber de Souza, J., Queiroz, V.F., Jeranoski, R.F., Vidal, C.M., Cavallini, G.S. 2015. Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. International Journal of Photoenergy, 2015, 860845. https://doi.org/10.1155/2015/860845
Block, P., Reimers, R., Xu, Y. 2015. Use of peracetic acid as a wastewater disinfectant to eliminate the formation of chlorinated disinfection by-products and inhibit the activity of endocrine disrupting compounds. Proceedings of the Water Environment Federation, 2015(9), 528-535, https://doi.org/10.2175/193864715819555328
Cai, M., Sun, P., Zhang, L., Huang, C.H. 2017. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation. Environmental Science & Technology, 51(24), 14217-14224. https://doi.org/10.1021/acs.est.7b04694
Campo, N., De Flora, C., Maffettone, R., Manoli, K., Sarathy, S., Santoro, D., Gonzalez-Olmos, R., Auset, M. 2020. Inactivation kinetics of antibiotic resistant Escherichia coli in secondary wastewater effluents by peracetic and performic acids. Water Research, 169, 115227. https://doi.org/10.1016/j.watres.2019.115227
Chhetri, R.K., Klupsch, E., Andersen, H.R., Jensen, P.E. 2018. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection. Environmental Science and Pollution Research, 25(33), 32851-32859. https://doi.org/10.1007/s11356-017-8585-5
Chhetri, R.K., Baun, A., Andersen, H.R. 2019. Acute toxicity and risk evaluation of the CSO disinfectants performic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite. Science of the Total Environment, 677, 1–8, https://doi.org/10.1016/j.scitotenv.2019.04.350
Collivignarelli, M.C., Abbà, A., Alloisio, G., Gozio, E., Benigna, I. 2017. Disinfection in wastewater treatment plants: evaluation of effectiveness and acute toxicity effects. Sustainability, 9(10), 1704. https://doi.org/10.3390/su9101704
Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S., Torretta, V. 2018. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10(1), 86. https://doi.org/10.3390/su10010086
da Silva, W.P., Carlos, T.D., Cavallini, G.S., Pereira, D.H. 2020. Peracetic acid: Structural elucidation for applications in wastewater treatment. Water Research, 168, 115143. https://doi.org/10.1016/j.watres.2019.115143
Dang, T.L.T., Imai, T., Le, T.V., Nguyen, D.M.K., Higuchi, T., Kanno, A., Sekine, M. 2016. Synergistic effect of pressurized carbon dioxide and sodium hypochlorite on the inactivation of Enterococcus sp. Water Research, 106, 204-213. https://doi.org/10.1016/j.watres.2016.10.003
Destiani, R., Templeton, M.R. 2019. Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. AIMS Environmental Science, 6(3), 222–241. https://doi.org/10.3934/environsci.2019.3.222
Drogui, P., Daghrir, R. 2015. Chlorine for water disinfection: Properties, applications and health effects. In: CO2 Sequestration, Biofuels and Depollution. (E. Lichtfouse, J. Schwarzbauer, D. Robert, eds.). Springer International Publishing, Switzerland, 1-32.
Dunkin, N., Weng, S., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2017. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent. Environmental Science & Technology, 51(5), 2972-2981. https://doi.org/10.1021/acs.est.6b05529
Environmental Protection Agency (EPA). 1999. Alternative Disinfectants and Oxidants, Ozone Chemistry, Chapter 3.1. Environmental Protection Agency (EPA), EPA 815-R-99-014. https://www.epa.gov
Eramo, A., Medina, W.R.M., Fahrenfeld, N.L. 2017. Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community. Environmental Science: Water Research & Technology, 3(6), 1061-1072. https://doi.org/10.1039/C7EW00184C
Ersoy, Z.G., Dinc, O., Cinar, B., Gedik, S.T., Dimoglo, A. 2019. Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT Food Science and Technology, 102, 205-213. https://doi.org/10.1016/j.lwt.2018.12.041
Fiorentino, A., Ferro, G., Alferez, M.C., Polo, L.M.I., Fernández, I.P., Rizzo, L. 2015. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. Journal of Photochemistry and Photobiology B: Biology, 148, 43-50. https://doi.org/10.1016/j.jphotobiol.2015.03.029
Furukawa, T., Jikumaru, A., Ueno, T., Sei, K. 2017. Inactivation effect of antibiotic-resistant gene using chlorine disinfection. Water, 9(7), 547. https://doi.org/10.3390/w9070547
Gao, Y.Q., Gao, N.Y., Chu, W.H., Yang, Q.L., Yin, D.Q. 2017. Kinetics and mechanistic investigation into the degradation of naproxen by a UV/chlorine process. RSC Advances, 7(53), 33627-33634. https://doi.org/10.1039/C7RA04540A
Gao, Z.C., Lin, Y.L., Xu, B., Xia, Y., Hu, C.Y., Zhang, T.Y., Gao, N.Y. 2019. Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 154, 199-209. https://doi.org/10.1016/j.watres.2019.02.004
Gao, Z., Lin, Y., Xu, B., Xia, Y., Hu, C., Zhang, T., Qian, H., Cao, T., Gao, N. 2020. Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. Water Research, 182, 116035. https://doi.org/10.1016/j.watres.2020.116035
Garg, A., Narasimman, L.M., Hogg, J., Nutter, A., Mahoney, G. 2016. Wastewater Disinfection with Peracetic Acid. Proceedings of
the Water Environment Federation, 2016(13), 1798-1808. https://doi.org/10.2175/193864716819706257
Garg, A., Namboodiri, V., Smith, B., Al-Anazi, A., Murugesan, B., Bowman, T. 2018. Disinfection of wastewater with peracetic acid (PAA) and UV combined treatment: a pilot study. Proceedings of the Water Environment Federation, 2018(6), 76-89. https://doi.org/10.2175/193864718824828344
Gilca, A.F., Teodosiu, C., Fiore, S., Musteret, C.P. 2020. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere, 259, 127476. https://doi.org/10.1016/j.chemosphere.2020.127476
Gitis, V., Hankins, N. 2018. Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, 34-38. https://doi.org/10.1016/j.jwpe.2018.06.003
Gryshko, I., Lugovskoy, A. 2015. Methods of microorganisms inactivation in the technological liquids. Вісник Національного технічного університету України Київський політехнічний інститут. Серія: Машинобудування, 3, 165-171. http://nbuv.gov.ua/UJRN/VKPI_mash_2015_3_25
Hassaballah, A.H., Nyitrai, J., Hart, C.H., Dai, N., Sassoubre, L.M. 2019. A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection. Environmental Science: Water Research & Technology, 5(8), 1453-1463. https://doi.org/10.1039/C9EW00341J
Hassaballah, A.H., Bhatt, T., Nyitrai, J., Dai, N., Sassoubre, L. 2020. Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. Environmental Science: Water Research & Technology, 6(1), 197-209. https://doi.org/10.1039/C9EW00837C
Henao, L.D., Cascio, M., Turolla, A., Antonelli, M. 2018a. Effect of suspended solids on peracetic acid decay and bacterial inactivation kinetics: Experimental assessment and definition of predictive models. Science of the Total Environment, 643, 936-945. https://doi.org/10.1016/j.scitotenv.2018.06.219
Henao, L.D., Turolla, A., Antonelli, M. 2018b. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review, Chemosphere, 213, 25-40. https://doi.org/10.1016/j.chemosphere.2018.09.005
Hollman, J., Dominic, J.A., Achari, G. 2020. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2. Chemosphere, 248, 125911. https://doi.org/10.1016/j.chemosphere.2020.125911
How, Z.T., Kristiana, I., Busetti, F., Linge, K.L., Joll, C.A. 2017. Organic chloramines in chlorine-based disinfected water systems: a critical review. Journal of Environmental Sciences, 58, 2-18. https://doi.org/10.1016/j.jes.2017.05.025
Hua, Z., Li, D., Wu, Z., Wang, D., Cui, Y., Huang, X., Fang, J., An, T. 2021. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide, Water Research, 188, 116549. https://doi.org/10.1016/j.watres.2020.116549
Ikehata, K., Li, Y., Komor, A.T., Gibson, G.W. 2018. Free Chlorine Disinfection of Full-Scale MBR Effluent to Achieve 5-Log Virus Inactivation. Water Environment Research, 90(7), 623-633. https://doi.org/10.2175/106143017X15131012153103
Kampf, G. 2018a. Peracetic Acid. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 63-98.
Kampf, G. 2018b. Sodium Hypochlorite. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 161-210.
Kibbee, R., Örmeci, B. 2020. Peracetic acid (PAA) and low-pressure ultraviolet (LPUV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently. Water Research, 183, 116048. https://doi.org/10.1016/j.watres.2020.116048
Kinani, S., Richard, B., Souissi, Y., Bouchonnet, S. 2012. Analysis of inorganic chloramines in water. TrAC Trends in Analytical Chemistry, 33, 55-67. https://doi.org/10.1016/j.trac.2011.10.006
Kingsley, D.H., Fay, J.P., Calci, K., Pouillot, R., Woods, J., Chen, H., Niemira, B.A., Van, D.J.M. 2017. Evaluation of chlorine treatment levels for inactivation of human norovirus and MS2 bacteriophage during sewage treatment. Applied and Environmental Microbiology, 83(23), e01270-17. https://doi.org/10.1128/AEM.01270-17
Kong, J., Lu, Y., Ren, Y., Chen, Z., Chen, M. 2021. The virus removal in UV irradiation, ozonation and chlorination. Water Cycle, 2(2021), 23-31. https://doi.org/10.1016/j.watcyc.2021.05.001
Köse, H., Yapar, N. 2017. The comparison of various disinfectants efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish Journal of Medical Sciences, 47(4), 1287-1294. https://doi.org/10.3906/sag-1605-88
Kozari, A., Paloglou, A., Voutsa, D. 2020. Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. Science of The Total Environment, 700, 134449. https://doi.org/10.1016/j.scitotenv.2019.134449
Lee, W., Westerhoff, P. 2009. Formation of organic chloramines during water disinfection–chlorination versus chloramination. Water research, 43(8), 2233-2239. https://doi.org/10.1016/j.watres.2009.02.009
Li, T., Jiang, Y., An, X., Liu, H., Hu, C., Qu, J. 2016. Transformation of humic acid and halogenated byproduct formation in UVchlorine processes. Water Research, 102, 421-427. https://doi.org/10.1016/j.watres.2016.06.051
Li, Y., Yang, M., Zhang, X., Jiang, J., Liu, J., Yau, C.F., Graham, N.J.D., Li, X. 2017. Two-step chlorination: a new approach to disinfection of a primary sewage effluent. Water Research, 108, 339-347. https://doi.org/10.1016/j.watres.2016.11.019
Li, G.Q., Huo, Z.Y., Wu, Q.Y., Lu, Y., Hu, H.Y. 2018. Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Science of The Total Environment, 639, 1233-1240. https://doi.org/10.1016/j.scitotenv.2018.05.240
Lin, H., Zhu, X., Wang, Y., Yu, X. 2017. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems. Journal of Water and Health, 15(2), 218-227. https://doi.org/10.2166/wh.2017.141
Luukkonen, T., Pehkonen, S.O. 2016. Peracids in water treatment: A critical review. Critical Reviews in Environmental Science and Technology, 47(1), 1-39. https://doi.org/10.1080/10643389.2016.1272343
Luo, L.W., Wu, Y.H., Yu, T., Wang, Y.H., Chen, G.Q., Tong, X., Bai, Y., Xu, C., Wang, H.B., Ikuno, N., Hu, H.Y. 2021. Evaluating method and potential risk of chlorine-resistant bacteria (CRB): A review. Water Research, 188, 116474. https://doi.org/10.1016/j.watres.2020.116474
Luongo, G., Previtera, L., Ladhari, A., Fabio, G.D., Zarrelli, A. 2020. Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules, 25(10), 2294. https://doi.org/10.3390/molecules25102294
Ma, J.W., Huang, B.S., Hsu, C.W., Peng, C.W., Cheng, M.L., Kao, J.Y., Way, T.D., Yin, H.C., Wang, S.S. 2017. Efficacy and safety evaluation of a chlorine dioxide solution. International Journal of Environmental Research and Public Health, 14(3), 329. https://doi.org/10.3390/ijerph14030329
Macêdo, L.P.R., Dornelas, A.S.P., Vieira, M.M., de Jesus, F.J.S., Sarmento, R.A., Cavallini, G.S. 2019. Comparative ecotoxicological evaluation of peracetic acid and the active chlorine of calcium hypochlorite: Use of Dugesia tigrina as a bioindicator of environmental pollution. Chemosphere, 233, 273-281. https://doi.org/10.1016/j.chemosphere.2019.05.286
Malvestiti, J.A., Dantas R.F. 2019. Influence of industrial contamination in municipal secondary effluent disinfection by UV/H2O2. Environmental Science and Pollution Research, 26(13), 13286-13298. https://doi.org/10.1007/s11356-019-04705-1
Manoli, K., Sarathy, S., Maffettone, R., Santoro, D. 2019. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water Research, 153, 251-262. https://doi.org/10.1016/j.watres.2019.01.022
Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Rahisuddin, Changani, F., Yousefi, M., Ahmadi, S., Vambol, V. 2020. Chlorination disinfection by-products in Municipal drinking water–A review. Journal of Cleaner Production, 273, 123159. https://doi.org/10.1016/j.jclepro.2020.123159
McFadden, M., Loconsole, J., Schockling, A.J., Nerenberg, R., Pavissich, J.P. 2017. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH. Science of the Total Environment, 599, 533-539. https://doi.org/10.1016/j.scitotenv.2017.04.179
Medeiros, R.C., Daniel, L.A. 2015. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater. Acta Scientiarum Technology, 37(2), 203-209. https://doi.org/10.4025/actascitechnol.v37i2.24950
Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U. 2018. Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Research, 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042
Miranda, A.C., Lepretti, M., Rizzo, L., Caputo, I., Vaiano, V., Sacco, O., Lopes, W.S., Sannino, D. 2016. Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation. Science of the Total Environment, 554, 1-6. https://doi.org/10.1016/j.scitotenv.2016.02.189
Mounaouer, B., Abdennaceur, H. 2016. Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. https://doi.org/10.1007/s11356-016-7173-4
Muniesa, A., Escobar, D.J., Silva, N., Henríquez, P., Bustos, P., Perez, A.M., Mardones, F.O. 2019. Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis. Preventive Veterinary Medicine, 167, 196-201. https://doi.org/10.1016/j.prevetmed.2018.03.006
Murray, A., Goldman, J., Sarathy, S., Hilts, B., Bell, K., Santoro, D., Broomfield, C.O. 2016. Disinfection of a municipal wastewater secondary effluent with a combination of ultraviolet irradiation and peracetic acid. Proceedings of the Water Environment Federation, 10, 2053-2064. https://doi.org/10.2175/193864716819707751
Nie, X.B., Li, Z.H., Long, Y.N., He, P.P., Xu, C. 2017. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine. Chemosphere, 177, 7-14. https://doi.org/10.1016/j.chemosphere.2017.02.142
Ofori, I., Maddila, S., Lin, J., Jonnalagadda, S.B. 2018. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water: the kinetics and mechanism. Journal of Water Process Engineering, 26, 46-54. https://doi.org/10.1016/j.jwpe.2018.09.001
Phattarapattamawong, S., Chareewan, N., Polprasert, C. 2021. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Science of the Total Environment, 755, 142696. https://doi.org/10.1016/j.scitotenv.2020.142696
Quartaroli, L., Cardoso, B.H., de Paula, R.G., da Silva, G.H.R. 2018. Wastewater chlorination for reuse, an alternative for small communities. Water Environment Research, 90(12), 2100-2105. https://doi.org/10.2175/106143017X15131012188231
Ragazzo, P., Chiucchini, N., Piccolo, V., Spadolini, M., Carrer, S., Zanon, F., Gehr, R. 2020. Wastewater Disinfection: Long-Term Laboratory and Full-Scale Studies on Performic Acid in Comparison with Peracetic Acid and Chlorine. Water Research, 184, 116-169. https://doi.org/10.1016/j.watres.2020.116169
Rattanakul, S., Oguma, K., Takizawa, S. 2015. Sequential and simultaneous applications of UV and chlorine for adenovirus inactivation. Food and Environmental Virology, 7(3), 295-304. https://doi.org/10.1007/s12560-015-9202-8
Sun, P., Zhang, T., Mejia, T.B., Zhang, R., Cai, M., Huang, C.H. 2018. Rapid disinfection by peracetic acid combined with UV irradiation. Environmental science & technology letters, 5(6), 400-404. https://doi.org/10.1021/acs.estlett.8b00249
Valero, P., Mosteo, R., Ormad, M.P., Lázaro, L., Ovelleiro, J.L. 2015. Inactivation of Enterococcus sp. by conventional and advanced oxidation processes in synthetic treated urban wastewater. Ozone: Science & Engineering, 37(5), 467-475. https://doi.org/10.1080/01919512.2015.1042572
Wang, C., Ying, Z., Ma, M., Huo, M., Yang, W. 2019. Degradation of micropollutants by UV–chlorine treatment in reclaimed water: pH effects, formation of disinfectant byproducts, and toxicity assay. Water, 11(12), 2639. https://doi.org/10.3390/w11122639
Wang, Y., Couet, M., Gutierrez, L., Allard, Sé., Croué, J.P. 2020. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. Water Research, 172, 115463. https://doi.org/10.1016/j.watres.2019.115463
Wawryk, N., Wu, D., Zhou, A., Moe, B., Li, X.F. 2020. Disinfection: A trade-off between microbial and chemical risks. In: A New Paradigm for Environmental Chemistry and Toxicology (G. Jiang, X. Li, eds.), Springer Nature Singapore, Gateway East, Singapore, 211-228.
Wen, G., Xu, X., Huang, T., Zhu, H., Ma, J. 2017. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. Water Research, 125, 132-140. https://doi.org/10.1016/j.aguas.2017.08.038
Weng, S., Dunkin, N., Schwab, K.J., McQuarrie, J., Bell, K., Jacangelo, J.G. 2018. Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. Journal of environmental management, 221, 1-9. https://doi.org/10.1016/j.jenvman.2018.04.064
Wolfe, R.L., Ward, N.R., Olson, B.H. 1984. Inorganic chloramines as drinking water disinfectants: a review. Journal American Water Works Association, 76(5), 74-88. https://doi.org/10.1002/j.1551-8833.1984.tb05337.x
Yin, K., Deng, Y., Liu, C., He, Q., Wei, Y., Chen, S., Liu, T., Luo, S. 2018. Kinetics, Pathways and Toxicity Evaluation of Neonicotinoid Insecticides Degradation via UV/Chlorine Process. Chemical Engineering Journal, 346, 298-306. https://doi.org/10.1016/j.cej.2018.03.168
Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Science of the Total Environment, 512, 125-132. https://doi.org/10.1016/j.scitotenv.2015.01.028
Zhang, C., Brown, P.J.B., Miles, R.J., White, T.A., Grant, D.G., Stalla, D., Hu, Z. 2018. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. Water Research, 149, 640-649. https://doi.org/10.1016/j.watres.2018.10.062
Zhang, C., Brown, P.J., Hu, Z. 2019a. Higher functionality of bacterial plasmid DNA in water after peracetic acid disinfection compared with chlorination. Science of The Total Environment, 685, 419-427. https://doi.org/10.1016/j.scitotenv.2019.05.074
Zhang, Z., Chuang, Y.H., Szczuka, A., Ishida, K.P., Roback, S., Plumlee, M.H., Mitch, W.A. 2019b. Pilot-scale evaluation of oxidant speciation, 1, 4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Research, 164, 114939. https://doi.org/10.1016/j.watres.2019.114939
Zhang, K., San, Y., Cao, C., Zhang, T., Cen, C., Zhou, X. 2020a. Optimising the measurement of peracetic acid to assess its degradation during drinking water disinfection. Environmental Science and Pollution Research, 27(27), 34135-34146. https://doi.org/10.1007/s11356020-09505-6
Zhang, T., Wang, T., Mejia, T.B., Kissel, J.R., Xie, X., Huang, C.H. 2020b. Inactivation of bacteria by peracetic acid combined with uv irradiation: mechanism and optimization. Environmental Science & Technology, 54(15), 9652-9661. https://doi.org/10.1021/acs.est.0c02424
Zheng, J., Su, C., Zhou, J., Xu, L., Qian, Y., Chen, H. 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chemical Engineering Journal, 317, 309-316. https://doi.org/10.1016/j.cej.2017.02.076
Zhong, Y., Gan, W., Du, Y., Huang, H., Wu, Q., Xiang, Y., Yang, X. 2019. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2. Water Research, 162, 471-481. https://doi.org/10.1016/j.watres.2019.07.012
Zhou, S., Wu, Y., Zhu, S., Sun, J., Bu, L., Dionysiou, D.D. 2020. Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. Water Research, 172, 115508. https://doi.org/10.1016/j.watres.2020.115508
Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L., Xu, K. 2015. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environmental Science and Pollution Research, 22(9), 7037-7044. https://doi.org/10.1007/s11356-014-3919-z
Ziemba, C., Larivé, O., Deck, S., Huisman, T., Morgenroth, E. 2019. Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system. Water Research X, 2, 100020. https://doi.org/10.1016/j.wroa.2018.100020
Zou, H., Tang, H. 2019. Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water, 11(2), 258. https://doi.org/10.3390/w11020258
Zyara, A.M., Torvinen, E., Veijalainen, A.M., Heinonen-Tanski, H. 2016. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection. Journal of Water and Health, 14(4), 640-649. https://doi.org/10.2166/wh.2016.144
[-]