Mostrar el registro sencillo del ítem
dc.contributor.author | Ramos-Teodoro, Jerónimo | es_ES |
dc.contributor.author | Rodríguez, Francisco | es_ES |
dc.date.accessioned | 2022-10-04T12:11:10Z | |
dc.date.available | 2022-10-04T12:11:10Z | |
dc.date.issued | 2022-06-29 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/186921 | |
dc.description.abstract | [EN] Over the last few decades, lines of research related to distributed generation and energy management have given rise to the introduction of novel terms referring to continuous production systems and their optimal design, scheduling, control, or modelling. Although some of those ones emerged in the field of power grid analysis and operation, and their later extension towards other energy sources, all they share some common features and hence can be studied from a holistic perspective. In this paper, a review of different ongoing approaches is performed, aimed at offering a global and straightforward view of the stateof-the-art concepts to readers. In order to do so, the most remarkable elements that can be found in publications employed terminology, context, research purpose, mathematical treatment, optimisation strategies, and tools are first defined and characteri-sed. This helped to analyse and classify, in tabular form, some articles selected according to the impact of the journal, their number of cites and the use of certain terms that emerged in the ambit of distributed energy sistems, in order to find possible research gaps in this topic in relation the usual simulation, control, and optimisation techniques. The main conclusions evidence a scarce realisation of applied testing in real-world facilities and a broad neglect of environmental criteria, when it comes to designing and operating this kind of systems. | es_ES |
dc.description.abstract | [ES] Durante las últimas décadas, las líneas de investigación relacionadas con la producción distribuida y la gestión energética han dado lugar a la introducción de términos nuevos que aluden a sistemas de producción continuos y su diseño óptimo, planificación, control o modelado. Aunque algunos de estos se han originado en el campo del análisis y operación de la red eléctrica, y su posterior extensión a otras fuentes de energía, todos comparten algunos rasgos comunes que permiten su análisis desde una perspectiva holística. En este artículo, se lleva a cabo una revisión de diferentes enfoques actuales con el objetivo de ofrecer una visión global y sencilla del estado actual de estos conceptos a los lectores. Para ello, se definen primeramente los elementos más significativos presentes en las publicaciones: terminología empleada, contexto, propósito, tratamiento matemático, estrategias de optimización y herramientas. Esto ha servido para realizar una clasificación, en forma de tabla, de artículos más representativos de entre los disponibles en la literatura, así como un análisis comparativo, a fin de dilucidar posibles nichos de investigación en este tema. Las principales concusiones ponen de manifiesto una escasa realización de experimentos en instalaciones reales y una generalizada omisión de criterios medioambientales, cuando se trata del diseño y operación de este tipo de sistemas. | es_ES |
dc.description.sponsorship | Este trabajo ha sido financiado con el Proyecto R+D+i del Plan Nacional DPI2017-85007-R del Ministerio de Ciencia, Innovación y Universidades y Fondos FEDER. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Microgrids | es_ES |
dc.subject | Virtual power plants | es_ES |
dc.subject | Energy hubs | es_ES |
dc.subject | Multi-energy systems | es_ES |
dc.subject | Distributed multi-generation | es_ES |
dc.subject | Economic dispatch | es_ES |
dc.subject | Energy management | es_ES |
dc.subject | Model-based predictive control | es_ES |
dc.subject | Control and scheduling | es_ES |
dc.subject | Microrredes | es_ES |
dc.subject | Plantas de energía virtuales | es_ES |
dc.subject | Concentradores de energía | es_ES |
dc.subject | Sistemas multienergía | es_ES |
dc.subject | Multigeneración distribuida | es_ES |
dc.subject | Reparto económico | es_ES |
dc.subject | Gestión de energía | es_ES |
dc.subject | Control predictivo basado en modelo | es_ES |
dc.subject | Control y planificación | es_ES |
dc.title | Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales | es_ES |
dc.title.alternative | Distributed energy production, control and management: a review of terminology and common approaches | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.16497 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85007-R/ES/CONTROL Y GESTION OPTIMA DE RECURSOS HETEROGENEOS EN DISTRITOS PRODUCTIVOS AGROINDUSTRIALES INTEGRANDO ENERGIAS RENOVABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ramos-Teodoro, J.; Rodríguez, F. (2022). Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales. Revista Iberoamericana de Automática e Informática industrial. 19(3):233-253. https://doi.org/10.4995/riai.2022.16497 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.16497 | es_ES |
dc.description.upvformatpinicio | 233 | es_ES |
dc.description.upvformatpfin | 253 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\16497 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Alahyari, A., Ehsan, M., Mousavizadeh, M., 2019. A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A selfscheduling optimization considering price, renewable generation, and electric vehicles uncertainties. Journal of Energy Storage 25, 100812. https://doi.org/10.1016/j.est.2019.100812 | es_ES |
dc.description.references | AlHajri, I., Ahmadian, A., Elkamel, A., 2021. Stochastic day-ahead unit commitment scheduling of integrated electricity and gas networks with hydrogen energy storage (HES), plug-in electric vehicles (PEVs) and renewable energies. Sustainable Cities and Society 67, 102736. https://doi.org/10.1016/j.scs.2021.102736 | es_ES |
dc.description.references | Ali, H., Hussain, A., Bui, V., Kim, H., 2020. Consensus algorithm-based distributed operation of microgrids during grid-connected and islanded modes. IEEE Access 8, 78151-78165. https://doi.org/10.1109/ACCESS.2020.2989457 | es_ES |
dc.description.references | Alipour, M., Zare, K., Abapour, M., 2018. MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Transactions on Industrial Informatics 14 (1), 79-88. https://doi.org/10.1109/TII.2017.2730440 | es_ES |
dc.description.references | Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., Evins, R., 2015. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews 52, 1391-1404. https://doi.org/10.1016/j.rser.2015.07.123 | es_ES |
dc.description.references | Bakken, B. H., Skjelbred, H. I., Wolfgang, O., 2007. eTransport: Investment planning in energy supply systems with multiple energy carriers. Energy 32 (9), 1676-1689. https://doi.org/10.1016/j.energy.2007.01.003 | es_ES |
dc.description.references | Baringo, A., Baringo, L., Arroyo, J. M., 2019. Day-ahead self-scheduling of a virtual power plant in energy and reserve electricity markets under uncertainty. IEEE Transactions on Power Systems 34 (3), 1881-1894. https://doi.org/10.1109/TPWRS.2018.2883753 | es_ES |
dc.description.references | Batic, M., Tomasevic, N., Beccuti, G., Demiray, T., Vranes, S., 2016. Combined energy hub optimisation and demand side management for buildings. Energy and Buildings 127, 229-241. https://doi.org/10.1016/j.enbuild.2016.05.087 | es_ES |
dc.description.references | Beigvand, S. D., Abdi, H., La Scala, M., 2017. A general model for energy hub economic dispatch. Applied Energy 190, 1090-1111. https://doi.org/10.1016/j.apenergy.2016.12.126 | es_ES |
dc.description.references | Bisschop, J., Meeraus, A., 1982. On the development of a general algebraic modeling system in a strategic planning environment. In: Applications. Vol. 20 of Mathematical programming studies. Springer Berlin Heidelberg, pp. 1- 29. https://doi.org/10.1007/BFb0121223 | es_ES |
dc.description.references | Bolzoni, A., Parisio, A., Todd, R., Forsyth, A., 2021. Model predictive control for optimizing the flexibility of sustainable energy assets: An experimental case study. International Journal of Electrical Power & Energy Systems 129, 106822. https://doi.org/10.1016/j.ijepes.2021.106822 | es_ES |
dc.description.references | Bordons, C., Garcia-Torres, F., Ridao, M. Á., 2020. Control predictivo en microrredes interconectadas y con vehículos eléctricos. Revista Iberoamericana de Automática e Informática industrial 17 (3), 239-253. https://doi.org/10.4995/riai.2020.13304 | es_ES |
dc.description.references | Bozchalui, M. C., Cañizares, C. A., Bhattacharya, K., 2015. Optimal energy management of greenhouses in smart grids. IEEE Transactions on Smart Grid 6 (2), 827-835. https://doi.org/10.1109/TSG.2014.2372812 | es_ES |
dc.description.references | Brahman, F., Honarmand, M., Jadid, S., 2015. Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings 90, 65-75. https://doi.org/10.1016/j.enbuild.2014.12.039 | es_ES |
dc.description.references | Braun, M., Strauss, P., 2008. A review on aggregation approaches of controllable distributed energy units in electrical power systems. International Journal of Distributed Energy Resources 4 (4), 297-319. | es_ES |
dc.description.references | Burnham, J. F., 2006. Scopus database: a review. Biomedical digital libraries 3 (1), 1. https://doi.org/10.1186/1742-5581-3-1 | es_ES |
dc.description.references | Chen, B., Wang, J., Shahidehpour, M., 2018. Cyber-physical perspective on smart grid design and operation. IET Cyber-Physical Systems: Theory & Applications 3 (3), 129-141. https://doi.org/10.1049/iet-cps.2017.0143 | es_ES |
dc.description.references | Chicco, G., Mancarella, P., 2009. Distributed multi-generation: A comprehensive view. Renewable and Sustainable Energy Reviews 13 (3), 535-551. https://doi.org/10.1016/j.rser.2007.11.014 | es_ES |
dc.description.references | Clegg, S., Mancarella, P., 2019a. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part I: Highresolution spatial and temporal heat demand modelling. Energy 184, 180- 190. https://doi.org/10.1016/j.energy.2018.02.079 | es_ES |
dc.description.references | Clegg, S., Mancarella, P., 2019b. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part II: Transmission network analysis and low carbon technology and resilience case studies. Energy 184, 191-203. https://doi.org/10.1016/j.energy.2018.02.078 | es_ES |
dc.description.references | Crawley, D. B., Pedersen, C. O., Lawrie, L. K., Winkelmann, F. C., 2000. Energyplus: Energy simulation program. ASHRAE Journal 42, 49-56. | es_ES |
dc.description.references | Czyzyk, J., Mesnier, M. P., Moré, J. J., 1998. The NEOS server. IEEE Journal on Computational Science and Engineering 5 (3), 68""-75. https://doi.org/10.1109/99.714603 | es_ES |
dc.description.references | Dagoumas, A. S., Koltsaklis, N. E., 2019. Review of models for integrating renewable energy in the generation expansion planning. Applied Energy 242, 1573-1587. https://doi.org/10.1016/j.apenergy.2019.03.194 | es_ES |
dc.description.references | Dall'Anese, E., Guggilam, S. S., Simonetto, A., Chen, Y. C., Dhople, S. V., 2018. Optimal regulation of virtual power plants. IEEE Transactions on Power Systems 33 (2), 1868-1881. https://doi.org/10.1109/TPWRS.2017.2741920 | es_ES |
dc.description.references | Dolan, E. D., 2001. The NEOS server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory. https://doi.org/10.2172/822567 | es_ES |
dc.description.references | Ehsan, A., Yang, Q., 2018. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy 210, 44-59. https://doi.org/10.1016/j.apenergy.2017.10.106 | es_ES |
dc.description.references | Elkamel, M., Ahmadian, A., Diabat, A., Zheng, Q. P., 2021. Stochastic optimization for price-based unit commitment in renewable energy-based personal rapid transit systems in sustainable smart cities. Sustainable Cities and Society 65, 102618. https://doi.org/10.1016/j.scs.2020.102618 | es_ES |
dc.description.references | Evins, R., 2015. Multi-level optimization of building design, energy system sizing and operation. Energy 90, 1775-1789. https://doi.org/10.1016/j.energy.2015.07.007 | es_ES |
dc.description.references | Evins, R., Orehounig, K., Dorer, V., Carmeliet, J., 2014. New formulations of the 'energy hub' model to address operational constraints. Energy 73, 387- 398. https://doi.org/10.1016/j.energy.2014.06.029 | es_ES |
dc.description.references | Fabrizio, E., Branciforti, V., Costantino, A., Filippi, M., Barbero, S., Tecco, G., Mollo, P., Molino, A., 2017. Monitoring and managing of a micro-smart grid for renewable sources exploitation in an agro-industrial site. Sustainable Cities and Society 28, 88-100. https://doi.org/10.1016/j.scs.2016.08.026 | es_ES |
dc.description.references | Fabrizio, E., Corrado, V., Filippi, M., 2010. A model to design and optimize multi-energy systems in buildings at the design concept stage. Renewable Energy 35 (3), 644-655. https://doi.org/10.1016/j.renene.2009.08.012 | es_ES |
dc.description.references | Fan, H., Yuan, Q., Xia, S., Lu, J., Li, Z., 2020. Optimally coordinated expansion planning of coupled electricity, heat and natural gas infrastructure for multi-energy system. IEEE Access 8, 91139-91149. https://doi.org/10.1109/ACCESS.2020.2993035 | es_ES |
dc.description.references | Fang, Y., Zhao, S., Wang, N., Li, Z., Liu, J., 2019. Power system stochastic optimal dispatch considering thermal and electrical coordination. International Journal of Electrical Power & Energy Systems 110, 772-780. https://doi.org/10.1016/j.ijepes.2019.03.065 | es_ES |
dc.description.references | Faraji, J., Hashemi-Dezaki, H., Ketabi, A., 2021. Stochastic operation and scheduling of energy hub considering renewable energy sources' uncertainty and n-1 contingency. Sustainable Cities and Society 65, 102578. https://doi.org/10.1016/j.scs.2020.102578 | es_ES |
dc.description.references | Farhangi, H., 2010. The path of the smart grid. IEEE Power and Energy Magazine 8 (1), 18-28. https://doi.org/10.1109/MPE.2009.934876 | es_ES |
dc.description.references | Firouzmakan, P., Hooshmand, R.-A., Bornapour, M., Khodabakhshian, A., 2019. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renewable and Sustainable Energy Reviews 108, 355-368. https://doi.org/10.1016/j.rser.2019.04.001 | es_ES |
dc.description.references | Foroughi, M., Pasban, A., Moeini-Aghtaie, M., Fayaz-Heidari, A., 2021. A bilevel model for optimal bidding of a multi-carrier technical virtual power plant in energy markets. International Journal of Electrical Power & Energy Systems 125, 106397. https://doi.org/10.1016/j.ijepes.2020.106397 | es_ES |
dc.description.references | Fourer, R., Gay, D. M., Kernighan, B., 1989. AMPL: A mathematical programming language. In: Wallace, S. W. (Ed.), Algorithms and model formulations in mathematical programming. Springer-Verlag, Berlin, Heidelberg, pp. 150-151. https://doi.org/10.1007/978-3-642-83724-1_12 | es_ES |
dc.description.references | Freire, V. A., De Arruda, L. V. R., Bordons, C., Márquez, J. J., 2020. Optimal demand response management of a residential microgrid using model predictive control. IEEE Access 8, 228264-228276. https://doi.org/10.1109/ACCESS.2020.3045459 | es_ES |
dc.description.references | Fu, Y., Lu, Z., Hu, W., Wu, S., Wang, Y., Dong, L., Zhang, J., 2019. Research on joint optimal dispatching method for hybrid power system considering system security. Applied Energy 238, 147-63. https://doi.org/10.1016/j.apenergy.2019.01.034 | es_ES |
dc.description.references | Gabrielli, P., Gazzani, M., Martelli, E., Mazzotti, M., 2018. Optimal design of multi-energy systems with seasonal storage. Applied Energy 219, 408-424. https://doi.org/10.1016/j.apenergy.2017.07.142 | es_ES |
dc.description.references | García, C. E., Prett, D. M., Morari, M., 1989. Model predictive control: Theory and practice""A survey. Automatica 25 (3), 335-348. https://doi.org/10.1016/0005-1098(89)90002-2 | es_ES |
dc.description.references | Garcia-Torres, F., Vilaplana, D. G., Bordons, C., Roncero-Sanchez, P., Ridao, M. A., 2019. Optimal management of microgrids with external agents including battery/fuel cell electric vehicles. IEEE Transactions on Smart Grid 10 (4), 4299-4308. https://doi.org/10.1109/TSG.2018.2856524 | es_ES |
dc.description.references | Geidl, M., Andersson, G., 2007. Optimal power flow of multiple energy carriers. IEEE Transactions on Power Systems 22 (1), 145-155. https://doi.org/10.1109/TPWRS.2006.888988 | es_ES |
dc.description.references | Geidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G., Fröhlich, K., 2006. Energy hubs for the future. IEEE Power and Energy Magazine 5 (1), 24-30. https://doi.org/10.1109/MPAE.2007.264850 | es_ES |
dc.description.references | Ghaem Sigarchian, S., Orosz, M. S., Hemond, H. F., Malmquist, A., 2016. Optimum design of a hybrid PV-CSP-LPG microgrid with particle swarm optimization technique. Applied Thermal Engineering 109, 1031-1036. https://doi.org/10.1016/j.applthermaleng.2016.05.119 | es_ES |
dc.description.references | Ghaemi, S., Salehi, J., Moeini-Aghtaie, M., 2021. Estimating abilities of distributed energy resources in providing flexible ramp products for active distribution networks. Sustainable Cities and Society 65, 102593. https://doi.org/10.1016/j.scs.2020.102593 | es_ES |
dc.description.references | Ghedamsi, K., Aouzellag, D., 2010. Improvement of the performances for wind energy conversions systems. International Journal of Electrical Power & Energy Systems 32 (9), 936-945. https://doi.org/10.1016/j.ijepes.2010.02.012 | es_ES |
dc.description.references | Gil, J. D., Álvarez, J., Roca, L., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2019. Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse. Energy Conversion and Management 198, 111791. https://doi.org/10.1016/j.enconman.2019.111791 | es_ES |
dc.description.references | Givler, T., Lilienthal, P., 2005. Using HOMER software, NREL's micropower optimization model, to explore the role of gen-sets in small solar power systems""Case study: Sri Lanka. Tech. rep., National Renewable Energy Laboratory, Golden, Colorado, United States. https://doi.org/10.2172/15016073 | es_ES |
dc.description.references | Gong, X., Dong, F., Mohamed, M. A., Abdalla, O. M., Ali, Z. M., 2020. A secured energy management architecture for smart hybrid microgrids considering pem-fuel cell and electric vehicles. IEEE Access 8, 47807-47823. https://doi.org/10.1109/ACCESS.2020.2978789 | es_ES |
dc.description.references | Good, N., Mancarella, P., 2019. Flexibility in multi-energy communities with electrical and thermal storage: A stochastic, robust approach for multiservice demand response. IEEE Transactions on Smart Grid 10 (1), 503- 513. https://doi.org/10.1109/TSG.2017.2745559 | es_ES |
dc.description.references | Groissböck, M., 2019. Are open source energy system optimization tools mature enough for serious use? Renewable and Sustainable Energy Reviews 102, 234-248. https://doi.org/10.1016/j.rser.2018.11.020 | es_ES |
dc.description.references | Groover, M. P., 2015. Automation, production systems, and computerintegrated manufacturing, 4th Edition. Pearson. | es_ES |
dc.description.references | Gropp, W., Moré, J. J., 1997. Optimization environments and the NEOS server. In: Buhman, M. D., Iserles, A. (Eds.), Approximation theory and optimization. Cambridge University Press, pp. 167-182. | es_ES |
dc.description.references | Gu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W., Wu, Z., 2014. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. International Journal of Electrical Power & Energy Systems 54, 26-37. https://doi.org/10.1016/j.ijepes.2013.06.028 | es_ES |
dc.description.references | Guelpa, E., Bischi, A., Verda, V., Chertkov, M., Lund, H., 2019. Towards future infrastructures for sustainable multi-energy systems: A review. Energy 184, 2-21. https://doi.org/10.1016/j.energy.2019.05.057 | es_ES |
dc.description.references | Gurobi Optimization, LLC, 2019. Gurobi Optimizer Reference Manual. [Online]. Available: http://www.gurobi.com. Accessed on: Sep. 20, 2020. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C., 2007. Microgrids. IEEE Power and Energy Magazine 5 (4), 78-94. https://doi.org/10.1109/MPAE.2007.376583 | es_ES |
dc.description.references | Hemmati, M., Mirzaei, M. A., Abapour, M., Zare, K., Mohammadi-ivatloo, B., Mehrjerdi, H., Marzband, M., 2021. Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program. Sustainable Cities and Society 69, 102790. https://doi.org/10.1016/j.scs.2021.102790 | es_ES |
dc.description.references | Heredia, F. J., Cuadrado, M. D., Corchero, C., 2018. On optimal participation in the electricity markets of wind power plants with battery energy storage systems. Computers & Operations Research 96, 316-329. https://doi.org/10.1016/j.cor.2018.03.004 | es_ES |
dc.description.references | Holmström, K., Göran, A. O., Edvall, M. M., 2010. User's Guide for TOMLAB 7. [Online]. Available: https://tomopt.com/docs/TOMLAB.pdf. Accessed on: Sep. 20, 2020. | es_ES |
dc.description.references | Hou, W., Liu, Z., Ma, L., Wang, L., 2020. A real-time rolling horizon chance constrained optimization model for energy hub scheduling. Sustainable Cities and Society 62, 102417. https://doi.org/10.1016/j.scs.2020.102417 | es_ES |
dc.description.references | Huang, W., Zhang, N., Yang, J., Wang, Y., Kang, C., 2019. Optimal configuration planning of multi-energy systems considering distributed renewable energy. IEEE Transactions on Smart Grid 10 (2), 1452-1464. https://doi.org/10.1109/TSG.2017.2767860 | es_ES |
dc.description.references | International Business Machines Corporation (IBM), 2019. IBM ILOG CPLEX Optimization Studio. [Online]. Available: https://www.ibm.com/ es-es/products/ilog-cplex-optimization-studio. Accessed on: Sep. 20, 2020. | es_ES |
dc.description.references | Jamalzadeh, F., Mirzahosseini, A. H., Faghihi, F., Panahi, M., 2020. Optimal operation of energy hub system using hybrid stochastic-interval optimization approach. Sustainable Cities and Society 54, 101998. https://doi.org/10.1016/j.scs.2019.101998 | es_ES |
dc.description.references | Jiang, Y., Xu, J., Sun, Y., Wei, C., Wang, J., Ke, D., Li, X., Yang, J., Peng, X., Tang, B., 2017. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system. Applied Energy 190, 1126-1137. https://doi.org/10.1016/j.apenergy.2017.01.030 | es_ES |
dc.description.references | Ju, L., Zhao, R., Tan, Q., Lu, Y., Tan, Q., Wang, W., 2019. A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response. Applied Energy 250, 1336-1355. https://doi.org/10.1016/j.apenergy.2019.05.027 | es_ES |
dc.description.references | Klessmann, C., Held, A., Rathmann, M., Ragwitz, M., 2011. Status and perspectives of renewable energy policy and deployment in the European Union""What is needed to reach the 2020 targets? Energy policy 39 (12), 7637-7657. https://doi.org/10.1016/j.enpol.2011.08.038 | es_ES |
dc.description.references | Kong, X., Xiao, J., Wang, C., Cui, K., Jin, Q., Kong, D., 2019. Bi-level multitime scale scheduling method based on bidding for multi-operator virtual power plant. Applied Energy 249, 178-189. https://doi.org/10.1016/j.apenergy.2019.04.130 | es_ES |
dc.description.references | Koraki, D., Strunz, K., 2018. Wind and solar power integration in electricity markets and distribution networks through service-centric virtual power plants. IEEE Transactions on Power Systems 33 (1), 473-485. https://doi.org/10.1109/TPWRS.2017.2710481 | es_ES |
dc.description.references | Kriechbaum, L., Scheiber, G., Kienberger, T., 2018. Grid-based multi-energy systems-modelling, assessment, open source modelling frameworks and challenges. Energy, Sustainability and Society 8 (35), 1-19. https://doi.org/10.1186/s13705-018-0176-x | es_ES |
dc.description.references | Kyriakarakos, G., Dounis, A., Rozakis, S., Arvanitis, K., Papadakis, G., 2011. Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel. Applied Energy 88 (12). https://doi.org/10.1016/j.apenergy.2011.05.038 | es_ES |
dc.description.references | Lekvan, A. A., Habibifar, R., Moradi, M., Khoshjahan, M., Nojavan, S., Jermsittiparsert, K., 2021. Robust optimization of renewable-based multi-energy micro-grid integrated with flexible energy conversion and storage devices. Sustainable Cities and Society 64, 102532. https://doi.org/10.1016/j.scs.2020.102532 | es_ES |
dc.description.references | Li, H., Rezvani, A., Hu, J., Ohshima, K., 2021. Optimal day-ahead scheduling of microgrid with hybrid electric vehicles using MSFLA algorithm considering control strategies. Sustainable Cities and Society 66, 102681. https://doi.org/10.1016/j.scs.2020.102681 | es_ES |
dc.description.references | Li, P., Liu, Y., Xin, H., Jiang, X., 2018. A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Transactions on Industrial Informatics 14 (10), 4343-4352. https://doi.org/10.1109/TII.2017.2788868 | es_ES |
dc.description.references | Liang, Z., Alsafasfeh, Q., Jin, T., Pourbabak, H., Su, W., 2019. Risk-constrained optimal energy management for virtual power plants considering correlated demand response. IEEE Transactions on Smart Grid 10 (2), 1577-1587. https://doi.org/10.1109/TSG.2017.2773039 | es_ES |
dc.description.references | Liu, C., Wang, D., Yin, Y., 2019. Two-stage optimal economic scheduling for commercial building multi-energy system through internet of things. IEEE Access 7, 174562-174572. https://doi.org/10.1109/ACCESS.2019.2957267 | es_ES |
dc.description.references | Liu, J., Wang, A., Song, C., Tao, R., Wang, X., 2020. Cooperative operation for integrated multi-energy system considering transmission losses. IEEE Access 8, 96934-96945. https://doi.org/10.1109/ACCESS.2020.2996913 | es_ES |
dc.description.references | Liu, X., Mancarella, P., 2016. Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems. Applied Energy 167, 336-352. https://doi.org/10.1016/j.apenergy.2015.08.089 | es_ES |
dc.description.references | Löfberg, J., 2004. YALMIP : a toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation. pp. 284-289. DOI: 10.1109/cacsd.2004.1393890 | es_ES |
dc.description.references | Long, S., Marjanovic, O., Parisio, A., 2019. Generalised control-oriented modelling framework for multi-energy systems. Applied Energy 235, 320-331. https://doi.org/10.1016/j.apenergy.2018.10.074 | es_ES |
dc.description.references | Lu, S., Gu, W., Zhou, J., Zhang, X., Wu, C., 2018. Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy. Energy 152, 358-370. https://doi.org/10.1016/j.energy.2018.03.088 | es_ES |
dc.description.references | Luo, X., Xia, J., Liu, Y., 2021. Extraction of dynamic operation strategy for standalone solar-based multi-energy systems: A method based on decision tree algorithm. Sustainable Cities and Society 70, 102917. https://doi.org/10.1016/j.scs.2021.102917 | es_ES |
dc.description.references | Mancarella, P., 2014. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 65, 1-17. https://doi.org/10.1016/j.energy.2013.10.041 | es_ES |
dc.description.references | Mansour-Saatloo, A., Mirzaei, M. A., Mohammadi-Ivatloo, B., Zare, K., 2020. A risk-averse hybrid approach for optimal participation of powerto-hydrogen technology-based multi-energy microgrid in multi-energy markets. Sustainable Cities and Society 63, 102421. https://doi.org/10.1016/j.scs.2020.102421 | es_ES |
dc.description.references | Mansouri, S. A., Ahmarinejad, A., Nematbakhsh, E., Javadi, M. S., Jordehi, A. R., Catalão, J. P., 2021. Energy management in microgrids including smart homes: A multi-objective approach. Sustainable Cities and Society 69, 102852. https://doi.org/10.1016/j.scs.2021.102852 | es_ES |
dc.description.references | Marnay, C., Venkataramanan, G., Stadler, M., Siddiqui, A., Firestone, R., Chandran, B., 2008. Optimal technology selection and operation of commercialbuilding microgrids. IEEE Transactions on Power Systems 23 (3), 975-982. https://doi.org/10.1109/TPWRS.2008.922654 | es_ES |
dc.description.references | Maroufmashat, A., Taqvi, S. T., Miragha, A., Fowler, M., Elkamel, A., 2019. Modeling and optimization of energy hubs: A comprehensive review. Inventions 4 (3), 50. https://doi.org/10.3390/inventions4030050 | es_ES |
dc.description.references | Martinez Cesena, E. A., Mancarella, P., 2019. Energy systems integration in smart districts: Robust optimisation of multi-energy flows in integrated electricity, heat and gas networks. IEEE Transactions on Smart Grid 10 (1), 1122-1131. https://doi.org/10.1109/TSG.2018.2828146 | es_ES |
dc.description.references | Mavromatidis, G., Petkov, I., 2021. Mango: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems. Applied Energy 288, 116585. https://doi.org/10.1016/j.apenergy.2021.116585 | es_ES |
dc.description.references | Mehdi, M., Kim, C., Saad, M., 2020. Robust centralized control for dc islanded microgrid considering communication network delay. IEEE Access 8, 77765-77778. https://doi.org/10.1109/ACCESS.2020.2989777 | es_ES |
dc.description.references | Mehrabadi, R. A., Moghaddam, M. P., Sheikh-El-Eslami, M. K., 2020. Regulatory-intervented sustainable generation expansion planning in multielectricity markets. Sustainable Cities and Society 52, 101794. https://doi.org/10.1016/j.scs.2019.101794 | es_ES |
dc.description.references | Menezes Morato, M., da Costa Mendes, P. R., Normey-Rico, J. E., Bordons, C., 2017. Optimal operation of hybrid power systems including renewable sources in the sugar cane industry. IET Renewable Power Generation 11 (8), 1237-1245. https://doi.org/10.1049/iet-rpg.2016.0443 | es_ES |
dc.description.references | Minutillo, M., Perna, A., Sorce, A., 2019. Combined hydrogen, heat and electricity generation via biogas reforming: Energy and economic assessments. International Journal of Hydrogen Energy 44 (43), 23880-23898. https://doi.org/10.1016/j.ijhydene.2019.07.105 | es_ES |
dc.description.references | Mirzapour-Kamanaj, A., Majidi, M., Zare, K., Kazemzadeh, R., 2020. Optimal strategic coordination of distribution networks and interconnected energy hubs: A linear multi-follower bi-level optimization model. International Journal of Electrical Power & Energy Systems 119, 105925. https://doi.org/10.1016/j.ijepes.2020.105925 | es_ES |
dc.description.references | Mohamed, M. A., Abdullah, H. M., El-Meligy, M. A., Sharaf, M., Soliman, A. T., Hajjiah, A., 2021. A novel fuzzy cloud stochastic framework for energy management of renewable microgrids based on maximum deployment of electric vehicles. International Journal of Electrical Power & Energy Systems 129, 106845. https://doi.org/10.1016/j.ijepes.2021.106845 | es_ES |
dc.description.references | Mohammadi, M., Ghasempour, R., Astaraei, F. R., Ahmadi, E., Aligholian, A., Toopshekan, A., 2018. Optimal planning of renewable energy resource for a residential house considering economic and reliability criteria. International Journal of Electrical Power & Energy Systems 96, 261-273. https://doi.org/10.1016/j.ijepes.2017.10.017 | es_ES |
dc.description.references | Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Yousefi, H., 2017a. Energy hub: From a model to a concept""A review. Renewable and Sustainable Energy Reviews 80, 1512-1527. https://doi.org/10.1016/j.rser.2017.07.030 | es_ES |
dc.description.references | Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Yousefi, H., Jalilinasrabady, S., 2017b. Optimal scheduling of energy hubs in the presence of uncertainty""A review. Journal of Energy Management and Technology 1 (1), 1-17. https://doi.org/10.22109/jemt.2017.49432 | es_ES |
dc.description.references | Mohammed, A., Refaat, S. S., Bayhan, S., Abu-Rub, H., 2019. AC microgrid control and management strategies: Evaluation and review. IEEE Power Electronics Magazine 6 (2), 18-31. https://doi.org/10.1109/MPEL.2019.2910292 | es_ES |
dc.description.references | Nasiri, N., Yazdankhah, A. S., Mirzaei, M. A., Loni, A., Mohammadi-Ivatloo, B., Zare, K., Marzband, M., 2020. A bi-level market-clearing for coordinated regional-local multi-carrier systems in presence of energy storage technologies. Sustainable Cities and Society 63, 102439. https://doi.org/10.1016/j.scs.2020.102439 | es_ES |
dc.description.references | Naval, N., Sánchez, R., Yusta, J. M., 2020. A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation. Renewable Energy 151, 57-69. https://doi.org/10.1016/j.renene.2019.10.144 | es_ES |
dc.description.references | Nosratabadi, S. M., Jahandide, M., Guerrero, J. M., 2021. Robust scenariobased concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of chp nonlinear model with triple operational zones. Sustainable Cities and Society 68, 102795. https://doi.org/10.1016/j.scs.2021.102795 | es_ES |
dc.description.references | Ombach, J., 2014. A short introduction to stochastic optimization. Schedae Informaticae 23, 9-20. https://doi.org/10.4467/20838476si.14.001.3018 | es_ES |
dc.description.references | Orehounig, K., Evins, R., Dorer, V., 2015. Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Applied Energy 154, 277-289. https://doi.org/10.1016/j.apenergy.2015.04.114 | es_ES |
dc.description.references | Pandžic, H., Kuzle, I., Capuder, T., 2013. Virtual power plant mid-term dispatch' optimization. Applied Energy 101, 134-141. https://doi.org/10.1016/j.apenergy.2012.05.039 | es_ES |
dc.description.references | Parisio, A., Del Vecchio, C., Vaccaro, A., 2012. A robust optimization approach to energy hub management. International Journal of Electrical Power & Energy Systems 42 (1), 98-104. https://doi.org/10.1016/j.ijepes.2012.03.015 | es_ES |
dc.description.references | Pasetti, M., Rinaldi, S., Manerba, D., Pasetti, M., Rinaldi, S., Manerba, D., 2018. A virtual power plant architecture for the demand-side management of smart prosumers. Applied Sciences 8 (3), 432. https://doi.org/10.3390/app8030432 | es_ES |
dc.description.references | Pei, W., Ma, X., Deng, W., Chen, X., Sun, H., Li, D., 2019. Industrial multienergy and production management scheme in cyber-physical environments: A case study in a battery manufacturing plant. IET Cyber-Physical Systems: Theory & Applications 4 (1), 13-21. https://doi.org/10.1049/iet-cps.2018.5029 | es_ES |
dc.description.references | Phurailatpam, C., Rajpurohit, B. S., Wang, L., 2018. Planning and optimization of autonomous DC microgrids for rural and urban applications in India. Renewable and Sustainable Energy Reviews 82, 194-204. https://doi.org/10.1016/j.rser.2017.09.022 | es_ES |
dc.description.references | Pudjianto, D., Ramsay, C., Strbac, G., 2007. Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation 1 (1), 10-16. https://doi.org/10.1049/iet-rpg:20060023 | es_ES |
dc.description.references | Ramos-Teodoro, J., 2021. Estrategias de gestión energética en entornos productivos con apoyo de energía solar. Tesis doctoral, Universidad de Almería. | es_ES |
dc.description.references | Ramos-Teodoro, J., Gil, J. D., Roca, L., Rodríguez, F., Berenguel, M., 2021. Optimal water management in agro-industrial districts: An energy hub's case study in the southeast of spain. Processes 9 (2), 333. https://doi.org/10.3390/pr9020333 | es_ES |
dc.description.references | Ramos-Teodoro, J., Rodríguez, F., Berenguel, M., Torres, J. L., 2018. Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example. Applied Energy 229, 537-550. https://doi.org/10.1016/j.apenergy.2018.08.007 | es_ES |
dc.description.references | Rodríguez-Blanco, T., Sarabia, D., De Prada, C., 2018. Optimización en tiempo real utilizando la metodología de adaptación de modificadores. Revista Iberoamericana de Automática e Informática industrial 15 (2), 133-144. https://doi.org/10.4995/riai.2017.8846 | es_ES |
dc.description.references | Sadeghi, H., Rashidinejad, M., Moeini-Aghtaie, M., Abdollahi, A., 2019. The energy hub: An extensive survey on the state-of-the-art. Applied Thermal Engineering 161, 114071. https://doi.org/10.1016/j.applthermaleng.2019.114071 | es_ES |
dc.description.references | Sadeghian, O., Oshnoei, A., Khezri, R., Muyeen, S., 2020. Risk-constrained stochastic optimal allocation of energy storage system in virtual power plants. Journal of Energy Storage 31, 101732. https://doi.org/10.1016/j.est.2020.101732 | es_ES |
dc.description.references | Sadeghian, O., Shotorbani, A. M., Mohammadi-ivatloo, B., 2019. Generation maintenance scheduling in virtual power plants. IET Generation, Transmission & Distribution 13 (12), 2584-2596. https://doi.org/10.1049/iet-gtd.2018.6751 | es_ES |
dc.description.references | Sahinidis, N. V., 2019. BARON v. 2019.7.13: Global Optimization of MixedInteger Nonlinear Programs, User's Manual. [Online]. Available: http:// www.minlp.com/downloads/docs/baron%20manual.pdf. Accessed on: Sep. 20, 2020. | es_ES |
dc.description.references | Salehpour, M. J., Alishavandi, A. M., Hossain, M. J., Rostami, S. M. H., Wang, J., Yu, X., 2021. A stochastic decentralized model for the privately interactive operation of a multi-carrier energy system. Sustainable Cities and Society 64, 102551. https://doi.org/10.1016/j.scs.2020.102551 | es_ES |
dc.description.references | Suman, G. K., Guerrero, J. M., Roy, O. P., 2021. Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach. Sustainable Cities and Society 67, 102723. https://doi.org/10.1016/j.scs.2021.102723 | es_ES |
dc.description.references | Tahir, M. F., Haoyong, C., Mehmood, K., Ali, N., Bhutto, J. A., 2019. Integrated energy system modeling of china for 2020 by incorporating demand response, heat pump and thermal storage. IEEE Access 7, 40095-40108. https://doi.org/10.1109/ACCESS.2019.2905684 | es_ES |
dc.description.references | Taylor, M., Long, S., Marjanovic, O., Parisio, A., 2021. Model predictive control of smart districts with fifth generation heating and cooling networks. IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2021.3082405 | es_ES |
dc.description.references | The MathWorks, Inc., 2019. MATLAB R2019a. [Online]. Available: http: //es.mathworks.com/products/matlab/. Accessed on: Sep. 20, 2020. | es_ES |
dc.description.references | Torres-Moreno, J., Gimenez-Fernandez, A., Perez-Garcia, M., Rodriguez, F., 2018. Energy management strategy for micro-grids with PV-battery systems and electric vehicles. Energies 11 (3), 522. https://doi.org/10.3390/en11030522 | es_ES |
dc.description.references | Vahedipour-Dahraie, M., Rashidizade-Kermani, H., Shafie-khah, M., Catalão, J. P., 2020. Risk-averse optimal energy and reserve scheduling for virtual power plants incorporating demand response programs. IEEE Transactions on Smart Grid. DOI: 10.1109/TSG.2020.3026971 | es_ES |
dc.description.references | van Beuzekom, I., Gibescu, M., Slootweg, J., 2015. A review of multi-energy system planning and optimization tools for sustainable urban development. In: Proceedings of the 2015 IEEE Eindhoven PowerTech. IEEE, pp. 1-7. https://doi.org/10.1109/PTC.2015.7232360 | es_ES |
dc.description.references | Velarde, P., Valverde, L., Maestre, J., Ocampo-Martinez, C., Bordons, C., 2017. On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid. Journal of Power Sources 343, 161-173. https://doi.org/10.1016/j.jpowsour.2017.01.015 | es_ES |
dc.description.references | Vergara-Dietrich, J. D., Menezes Morato, M., da Costa Mendes, P. R., Cani, A. A., Normey-Rico, J. E., Bordons, C., 2019. Advanced chance-constrained predictive control for the efficient energy management of renewable power systems. Journal of Process Control 74, 120-132. https://doi.org/10.1016/j.jprocont.2017.11.003 | es_ES |
dc.description.references | Wang, H., Riaz, S., Mancarella, P., 2020. Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization. Applied Energy 259, 114142. https://doi.org/10.1016/j.apenergy.2019.114142 | es_ES |
dc.description.references | Wang, J., Hu, Z., Xie, S., 2019. Expansion planning model of multi-energy system with the integration of active distribution network. Applied Energy 253, 113517. https://doi.org/10.1016/j.apenergy.2019.113517 | es_ES |
dc.description.references | Wang, Y., Zhang, N., Zhuo, Z., Kang, C., Kirschen, D., 2018. Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied Energy 210, 1141-1150. https://doi.org/10.1016/j.apenergy.2017.08.114 | es_ES |
dc.description.references | Wei, C., Xu, J., Liao, S., Sun, Y., Jiang, Y., Ke, D., Zhang, Z., Wang, J., 2018. A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy. Applied Energy 224, 659-670. https://doi.org/10.1016/j.apenergy.2018.05.032 | es_ES |
dc.description.references | Wenzel, S., Paulen, R., Stojanovski, G., Krämer, S., Beisheim, B., Engell, S., 2016. Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. Automatisierungstechnik 64 (6), 428-442. https://doi.org/10.1515/auto-2016-0003 | es_ES |
dc.description.references | Wirtz, M., Hahn, M., Schreiber, T., Müller, D., 2021. Design optimization of multi-energy systems using mixed-integer linear programming: Which model complexity and level of detail is sufficient? Energy Conversion and Management 240, 114249. https://doi.org/10.1016/j.enconman.2021.114249 | es_ES |
dc.description.references | Wozabal, D., Rameseder, G., 2020. Optimal bidding of a virtual power plant on the Spanish day-ahead and intraday market for electricity. European Journal of Operational Research 280 (2), 639-655. | es_ES |
dc.description.references | https://doi.org/10.1016/j.ejor.2019.07.022 | es_ES |
dc.description.references | Yu, S., Fang, F., Liu, Y., Liu, J., 2019. Uncertainties of virtual power plant: Problems and countermeasures. Applied Energy 239, 454-470. https://doi.org/10.1016/j.apenergy.2019.01.224 | es_ES |
dc.description.references | Yuan, Z., Wogrin, S., Hesamzadeh, M. R., 2017. Towards the Power Synergy Hub (PSHub): Coordinating the energy dispatch of super grid by modified Benders decomposition. Applied Energy 205, 1419-1434. https://doi.org/10.1016/j.apenergy.2017.09.086 | es_ES |
dc.description.references | Zamani, A. G., Zakariazadeh, A., Jadid, S., 2016. Day-ahead resource scheduling of a renewable energy based virtual power plant. Applied Energy 169, 324-340. https://doi.org/10.1016/j.apenergy.2016.02.011 | es_ES |
dc.description.references | Zamanloo, S., Abyaneh, H. A., Nafisi, H., Azizi, M., 2021. Optimal two-level active and reactive energy management of residential appliances in smart homes. Sustainable Cities and Society, 102972. https://doi.org/10.1016/j.scs.2021.102972 | es_ES |
dc.description.references | Zeng, L., Sun, Y., Zhou, X., Li, B., Qi, B., 2018. Demand dispatch in cyberphysical load aggregation system with multilevel incentives. Journal of Modern Power Systems and Clean Energy 6 (5), 968-978. https://doi.org/10.1007/s40565-018-0451-z | es_ES |
dc.description.references | Zhang, G., Jiang, C., Wang, X., 2019. Comprehensive review on structure and operation of virtual power plant in electrical system. IET Generation, Transmission & Distribution 13 (2), 145-156. https://doi.org/10.1049/iet-gtd.2018.5880 | es_ES |
dc.description.references | Zhang, Y., Zhang, T., Wang, R., Liu, Y., Guo, B., 2015. Optimal operation of a smart residential microgrid based on model predictive control by considering uncertainties and storage impacts. Solar Energy 122, 1052-1065. https://doi.org/10.1016/j.solener.2015.10.027 | es_ES |
dc.description.references | Zhong, W., Yang, C., Xie, K., Xie, S., Zhang, Y., 2018. ADMM-based distributed auction mechanism for energy hub scheduling in smart buildings. IEEE Access 6, 45635-45645. https://doi.org/10.1109/ACCESS.2018.2865625 | es_ES |
dc.description.references | Zia, M. F., Benbouzid, M., Elbouchikhi, E., Muyeen, S., Techato, K., Guerrero, J. M., 2020. Microgrid transactive energy: Review, architectures, distributed ledger technologies, and market analysis. IEEE Access 8, 19410-19432. https://doi.org/10.1109/ACCESS.2020.2968402 | es_ES |