- -

Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramos-Teodoro, Jerónimo es_ES
dc.contributor.author Rodríguez, Francisco es_ES
dc.date.accessioned 2022-10-04T12:11:10Z
dc.date.available 2022-10-04T12:11:10Z
dc.date.issued 2022-06-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/186921
dc.description.abstract [EN] Over the last few decades, lines of research related to distributed generation and energy management have given rise to the introduction of novel terms referring to continuous production systems and their optimal design, scheduling, control, or modelling. Although some of those ones emerged in the field of power grid analysis and operation, and their later extension towards other energy sources, all they share some common features and hence can be studied from a holistic perspective. In this paper, a review of different ongoing approaches is performed, aimed at offering a global and straightforward view of the stateof-the-art concepts to readers. In order to do so, the most remarkable elements that can be found in publications employed terminology, context, research purpose, mathematical treatment, optimisation strategies, and tools are first defined and characteri-sed. This helped to analyse and classify, in tabular form, some articles selected according to the impact of the journal, their number of cites and the use of certain terms that emerged in the ambit of distributed energy sistems, in order to find possible research gaps in this topic in relation the usual simulation, control, and optimisation techniques. The main conclusions evidence a scarce realisation of applied testing in real-world facilities and a broad neglect of environmental criteria, when it comes to designing and operating this kind of systems. es_ES
dc.description.abstract [ES] Durante las últimas décadas, las líneas de investigación relacionadas con la producción distribuida y la gestión energética han dado lugar a la introducción de términos nuevos que aluden a sistemas de producción continuos y su diseño óptimo, planificación, control o modelado. Aunque algunos de estos se han originado en el campo del análisis y operación de la red eléctrica, y su posterior extensión a otras fuentes de energía, todos comparten algunos rasgos comunes que permiten su análisis desde una perspectiva holística. En este artículo, se lleva a cabo una revisión de diferentes enfoques actuales con el objetivo de ofrecer una visión global y sencilla del estado actual de estos conceptos a los lectores. Para ello, se definen primeramente los elementos más significativos presentes en las publicaciones: terminología empleada, contexto, propósito, tratamiento matemático, estrategias de optimización y herramientas. Esto ha servido para realizar una clasificación, en forma de tabla, de artículos más representativos de entre los disponibles en la literatura, así como un análisis comparativo, a fin de dilucidar posibles nichos de investigación en este tema. Las principales concusiones ponen de manifiesto una escasa realización de experimentos en instalaciones reales y una generalizada omisión de criterios medioambientales, cuando se trata del diseño y operación de este tipo de sistemas. es_ES
dc.description.sponsorship Este trabajo ha sido financiado con el Proyecto R+D+i del Plan Nacional DPI2017-85007-R del Ministerio de Ciencia, Innovación y Universidades y Fondos FEDER. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Microgrids es_ES
dc.subject Virtual power plants es_ES
dc.subject Energy hubs es_ES
dc.subject Multi-energy systems es_ES
dc.subject Distributed multi-generation es_ES
dc.subject Economic dispatch es_ES
dc.subject Energy management es_ES
dc.subject Model-based predictive control es_ES
dc.subject Control and scheduling es_ES
dc.subject Microrredes es_ES
dc.subject Plantas de energía virtuales es_ES
dc.subject Concentradores de energía es_ES
dc.subject Sistemas multienergía es_ES
dc.subject Multigeneración distribuida es_ES
dc.subject Reparto económico es_ES
dc.subject Gestión de energía es_ES
dc.subject Control predictivo basado en modelo es_ES
dc.subject Control y planificación es_ES
dc.title Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales es_ES
dc.title.alternative Distributed energy production, control and management: a review of terminology and common approaches es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16497
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85007-R/ES/CONTROL Y GESTION OPTIMA DE RECURSOS HETEROGENEOS EN DISTRITOS PRODUCTIVOS AGROINDUSTRIALES INTEGRANDO ENERGIAS RENOVABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ramos-Teodoro, J.; Rodríguez, F. (2022). Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales. Revista Iberoamericana de Automática e Informática industrial. 19(3):233-253. https://doi.org/10.4995/riai.2022.16497 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16497 es_ES
dc.description.upvformatpinicio 233 es_ES
dc.description.upvformatpfin 253 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16497 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Alahyari, A., Ehsan, M., Mousavizadeh, M., 2019. A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A selfscheduling optimization considering price, renewable generation, and electric vehicles uncertainties. Journal of Energy Storage 25, 100812. https://doi.org/10.1016/j.est.2019.100812 es_ES
dc.description.references AlHajri, I., Ahmadian, A., Elkamel, A., 2021. Stochastic day-ahead unit commitment scheduling of integrated electricity and gas networks with hydrogen energy storage (HES), plug-in electric vehicles (PEVs) and renewable energies. Sustainable Cities and Society 67, 102736. https://doi.org/10.1016/j.scs.2021.102736 es_ES
dc.description.references Ali, H., Hussain, A., Bui, V., Kim, H., 2020. Consensus algorithm-based distributed operation of microgrids during grid-connected and islanded modes. IEEE Access 8, 78151-78165. https://doi.org/10.1109/ACCESS.2020.2989457 es_ES
dc.description.references Alipour, M., Zare, K., Abapour, M., 2018. MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Transactions on Industrial Informatics 14 (1), 79-88. https://doi.org/10.1109/TII.2017.2730440 es_ES
dc.description.references Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., Evins, R., 2015. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews 52, 1391-1404. https://doi.org/10.1016/j.rser.2015.07.123 es_ES
dc.description.references Bakken, B. H., Skjelbred, H. I., Wolfgang, O., 2007. eTransport: Investment planning in energy supply systems with multiple energy carriers. Energy 32 (9), 1676-1689. https://doi.org/10.1016/j.energy.2007.01.003 es_ES
dc.description.references Baringo, A., Baringo, L., Arroyo, J. M., 2019. Day-ahead self-scheduling of a virtual power plant in energy and reserve electricity markets under uncertainty. IEEE Transactions on Power Systems 34 (3), 1881-1894. https://doi.org/10.1109/TPWRS.2018.2883753 es_ES
dc.description.references Batic, M., Tomasevic, N., Beccuti, G., Demiray, T., Vranes, S., 2016. Combined energy hub optimisation and demand side management for buildings. Energy and Buildings 127, 229-241. https://doi.org/10.1016/j.enbuild.2016.05.087 es_ES
dc.description.references Beigvand, S. D., Abdi, H., La Scala, M., 2017. A general model for energy hub economic dispatch. Applied Energy 190, 1090-1111. https://doi.org/10.1016/j.apenergy.2016.12.126 es_ES
dc.description.references Bisschop, J., Meeraus, A., 1982. On the development of a general algebraic modeling system in a strategic planning environment. In: Applications. Vol. 20 of Mathematical programming studies. Springer Berlin Heidelberg, pp. 1- 29. https://doi.org/10.1007/BFb0121223 es_ES
dc.description.references Bolzoni, A., Parisio, A., Todd, R., Forsyth, A., 2021. Model predictive control for optimizing the flexibility of sustainable energy assets: An experimental case study. International Journal of Electrical Power & Energy Systems 129, 106822. https://doi.org/10.1016/j.ijepes.2021.106822 es_ES
dc.description.references Bordons, C., Garcia-Torres, F., Ridao, M. Á., 2020. Control predictivo en microrredes interconectadas y con vehículos eléctricos. Revista Iberoamericana de Automática e Informática industrial 17 (3), 239-253. https://doi.org/10.4995/riai.2020.13304 es_ES
dc.description.references Bozchalui, M. C., Cañizares, C. A., Bhattacharya, K., 2015. Optimal energy management of greenhouses in smart grids. IEEE Transactions on Smart Grid 6 (2), 827-835. https://doi.org/10.1109/TSG.2014.2372812 es_ES
dc.description.references Brahman, F., Honarmand, M., Jadid, S., 2015. Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings 90, 65-75. https://doi.org/10.1016/j.enbuild.2014.12.039 es_ES
dc.description.references Braun, M., Strauss, P., 2008. A review on aggregation approaches of controllable distributed energy units in electrical power systems. International Journal of Distributed Energy Resources 4 (4), 297-319. es_ES
dc.description.references Burnham, J. F., 2006. Scopus database: a review. Biomedical digital libraries 3 (1), 1. https://doi.org/10.1186/1742-5581-3-1 es_ES
dc.description.references Chen, B., Wang, J., Shahidehpour, M., 2018. Cyber-physical perspective on smart grid design and operation. IET Cyber-Physical Systems: Theory & Applications 3 (3), 129-141. https://doi.org/10.1049/iet-cps.2017.0143 es_ES
dc.description.references Chicco, G., Mancarella, P., 2009. Distributed multi-generation: A comprehensive view. Renewable and Sustainable Energy Reviews 13 (3), 535-551. https://doi.org/10.1016/j.rser.2007.11.014 es_ES
dc.description.references Clegg, S., Mancarella, P., 2019a. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part I: Highresolution spatial and temporal heat demand modelling. Energy 184, 180- 190. https://doi.org/10.1016/j.energy.2018.02.079 es_ES
dc.description.references Clegg, S., Mancarella, P., 2019b. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part II: Transmission network analysis and low carbon technology and resilience case studies. Energy 184, 191-203. https://doi.org/10.1016/j.energy.2018.02.078 es_ES
dc.description.references Crawley, D. B., Pedersen, C. O., Lawrie, L. K., Winkelmann, F. C., 2000. Energyplus: Energy simulation program. ASHRAE Journal 42, 49-56. es_ES
dc.description.references Czyzyk, J., Mesnier, M. P., Moré, J. J., 1998. The NEOS server. IEEE Journal on Computational Science and Engineering 5 (3), 68""-75. https://doi.org/10.1109/99.714603 es_ES
dc.description.references Dagoumas, A. S., Koltsaklis, N. E., 2019. Review of models for integrating renewable energy in the generation expansion planning. Applied Energy 242, 1573-1587. https://doi.org/10.1016/j.apenergy.2019.03.194 es_ES
dc.description.references Dall'Anese, E., Guggilam, S. S., Simonetto, A., Chen, Y. C., Dhople, S. V., 2018. Optimal regulation of virtual power plants. IEEE Transactions on Power Systems 33 (2), 1868-1881. https://doi.org/10.1109/TPWRS.2017.2741920 es_ES
dc.description.references Dolan, E. D., 2001. The NEOS server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory. https://doi.org/10.2172/822567 es_ES
dc.description.references Ehsan, A., Yang, Q., 2018. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy 210, 44-59. https://doi.org/10.1016/j.apenergy.2017.10.106 es_ES
dc.description.references Elkamel, M., Ahmadian, A., Diabat, A., Zheng, Q. P., 2021. Stochastic optimization for price-based unit commitment in renewable energy-based personal rapid transit systems in sustainable smart cities. Sustainable Cities and Society 65, 102618. https://doi.org/10.1016/j.scs.2020.102618 es_ES
dc.description.references Evins, R., 2015. Multi-level optimization of building design, energy system sizing and operation. Energy 90, 1775-1789. https://doi.org/10.1016/j.energy.2015.07.007 es_ES
dc.description.references Evins, R., Orehounig, K., Dorer, V., Carmeliet, J., 2014. New formulations of the 'energy hub' model to address operational constraints. Energy 73, 387- 398. https://doi.org/10.1016/j.energy.2014.06.029 es_ES
dc.description.references Fabrizio, E., Branciforti, V., Costantino, A., Filippi, M., Barbero, S., Tecco, G., Mollo, P., Molino, A., 2017. Monitoring and managing of a micro-smart grid for renewable sources exploitation in an agro-industrial site. Sustainable Cities and Society 28, 88-100. https://doi.org/10.1016/j.scs.2016.08.026 es_ES
dc.description.references Fabrizio, E., Corrado, V., Filippi, M., 2010. A model to design and optimize multi-energy systems in buildings at the design concept stage. Renewable Energy 35 (3), 644-655. https://doi.org/10.1016/j.renene.2009.08.012 es_ES
dc.description.references Fan, H., Yuan, Q., Xia, S., Lu, J., Li, Z., 2020. Optimally coordinated expansion planning of coupled electricity, heat and natural gas infrastructure for multi-energy system. IEEE Access 8, 91139-91149. https://doi.org/10.1109/ACCESS.2020.2993035 es_ES
dc.description.references Fang, Y., Zhao, S., Wang, N., Li, Z., Liu, J., 2019. Power system stochastic optimal dispatch considering thermal and electrical coordination. International Journal of Electrical Power & Energy Systems 110, 772-780. https://doi.org/10.1016/j.ijepes.2019.03.065 es_ES
dc.description.references Faraji, J., Hashemi-Dezaki, H., Ketabi, A., 2021. Stochastic operation and scheduling of energy hub considering renewable energy sources' uncertainty and n-1 contingency. Sustainable Cities and Society 65, 102578. https://doi.org/10.1016/j.scs.2020.102578 es_ES
dc.description.references Farhangi, H., 2010. The path of the smart grid. IEEE Power and Energy Magazine 8 (1), 18-28. https://doi.org/10.1109/MPE.2009.934876 es_ES
dc.description.references Firouzmakan, P., Hooshmand, R.-A., Bornapour, M., Khodabakhshian, A., 2019. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renewable and Sustainable Energy Reviews 108, 355-368. https://doi.org/10.1016/j.rser.2019.04.001 es_ES
dc.description.references Foroughi, M., Pasban, A., Moeini-Aghtaie, M., Fayaz-Heidari, A., 2021. A bilevel model for optimal bidding of a multi-carrier technical virtual power plant in energy markets. International Journal of Electrical Power & Energy Systems 125, 106397. https://doi.org/10.1016/j.ijepes.2020.106397 es_ES
dc.description.references Fourer, R., Gay, D. M., Kernighan, B., 1989. AMPL: A mathematical programming language. In: Wallace, S. W. (Ed.), Algorithms and model formulations in mathematical programming. Springer-Verlag, Berlin, Heidelberg, pp. 150-151. https://doi.org/10.1007/978-3-642-83724-1_12 es_ES
dc.description.references Freire, V. A., De Arruda, L. V. R., Bordons, C., Márquez, J. J., 2020. Optimal demand response management of a residential microgrid using model predictive control. IEEE Access 8, 228264-228276. https://doi.org/10.1109/ACCESS.2020.3045459 es_ES
dc.description.references Fu, Y., Lu, Z., Hu, W., Wu, S., Wang, Y., Dong, L., Zhang, J., 2019. Research on joint optimal dispatching method for hybrid power system considering system security. Applied Energy 238, 147-63. https://doi.org/10.1016/j.apenergy.2019.01.034 es_ES
dc.description.references Gabrielli, P., Gazzani, M., Martelli, E., Mazzotti, M., 2018. Optimal design of multi-energy systems with seasonal storage. Applied Energy 219, 408-424. https://doi.org/10.1016/j.apenergy.2017.07.142 es_ES
dc.description.references García, C. E., Prett, D. M., Morari, M., 1989. Model predictive control: Theory and practice""A survey. Automatica 25 (3), 335-348. https://doi.org/10.1016/0005-1098(89)90002-2 es_ES
dc.description.references Garcia-Torres, F., Vilaplana, D. G., Bordons, C., Roncero-Sanchez, P., Ridao, M. A., 2019. Optimal management of microgrids with external agents including battery/fuel cell electric vehicles. IEEE Transactions on Smart Grid 10 (4), 4299-4308. https://doi.org/10.1109/TSG.2018.2856524 es_ES
dc.description.references Geidl, M., Andersson, G., 2007. Optimal power flow of multiple energy carriers. IEEE Transactions on Power Systems 22 (1), 145-155. https://doi.org/10.1109/TPWRS.2006.888988 es_ES
dc.description.references Geidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G., Fröhlich, K., 2006. Energy hubs for the future. IEEE Power and Energy Magazine 5 (1), 24-30. https://doi.org/10.1109/MPAE.2007.264850 es_ES
dc.description.references Ghaem Sigarchian, S., Orosz, M. S., Hemond, H. F., Malmquist, A., 2016. Optimum design of a hybrid PV-CSP-LPG microgrid with particle swarm optimization technique. Applied Thermal Engineering 109, 1031-1036. https://doi.org/10.1016/j.applthermaleng.2016.05.119 es_ES
dc.description.references Ghaemi, S., Salehi, J., Moeini-Aghtaie, M., 2021. Estimating abilities of distributed energy resources in providing flexible ramp products for active distribution networks. Sustainable Cities and Society 65, 102593. https://doi.org/10.1016/j.scs.2020.102593 es_ES
dc.description.references Ghedamsi, K., Aouzellag, D., 2010. Improvement of the performances for wind energy conversions systems. International Journal of Electrical Power & Energy Systems 32 (9), 936-945. https://doi.org/10.1016/j.ijepes.2010.02.012 es_ES
dc.description.references Gil, J. D., Álvarez, J., Roca, L., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2019. Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse. Energy Conversion and Management 198, 111791. https://doi.org/10.1016/j.enconman.2019.111791 es_ES
dc.description.references Givler, T., Lilienthal, P., 2005. Using HOMER software, NREL's micropower optimization model, to explore the role of gen-sets in small solar power systems""Case study: Sri Lanka. Tech. rep., National Renewable Energy Laboratory, Golden, Colorado, United States. https://doi.org/10.2172/15016073 es_ES
dc.description.references Gong, X., Dong, F., Mohamed, M. A., Abdalla, O. M., Ali, Z. M., 2020. A secured energy management architecture for smart hybrid microgrids considering pem-fuel cell and electric vehicles. IEEE Access 8, 47807-47823. https://doi.org/10.1109/ACCESS.2020.2978789 es_ES
dc.description.references Good, N., Mancarella, P., 2019. Flexibility in multi-energy communities with electrical and thermal storage: A stochastic, robust approach for multiservice demand response. IEEE Transactions on Smart Grid 10 (1), 503- 513. https://doi.org/10.1109/TSG.2017.2745559 es_ES
dc.description.references Groissböck, M., 2019. Are open source energy system optimization tools mature enough for serious use? Renewable and Sustainable Energy Reviews 102, 234-248. https://doi.org/10.1016/j.rser.2018.11.020 es_ES
dc.description.references Groover, M. P., 2015. Automation, production systems, and computerintegrated manufacturing, 4th Edition. Pearson. es_ES
dc.description.references Gropp, W., Moré, J. J., 1997. Optimization environments and the NEOS server. In: Buhman, M. D., Iserles, A. (Eds.), Approximation theory and optimization. Cambridge University Press, pp. 167-182. es_ES
dc.description.references Gu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W., Wu, Z., 2014. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. International Journal of Electrical Power & Energy Systems 54, 26-37. https://doi.org/10.1016/j.ijepes.2013.06.028 es_ES
dc.description.references Guelpa, E., Bischi, A., Verda, V., Chertkov, M., Lund, H., 2019. Towards future infrastructures for sustainable multi-energy systems: A review. Energy 184, 2-21. https://doi.org/10.1016/j.energy.2019.05.057 es_ES
dc.description.references Gurobi Optimization, LLC, 2019. Gurobi Optimizer Reference Manual. [Online]. Available: http://www.gurobi.com. Accessed on: Sep. 20, 2020. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C., 2007. Microgrids. IEEE Power and Energy Magazine 5 (4), 78-94. https://doi.org/10.1109/MPAE.2007.376583 es_ES
dc.description.references Hemmati, M., Mirzaei, M. A., Abapour, M., Zare, K., Mohammadi-ivatloo, B., Mehrjerdi, H., Marzband, M., 2021. Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program. Sustainable Cities and Society 69, 102790. https://doi.org/10.1016/j.scs.2021.102790 es_ES
dc.description.references Heredia, F. J., Cuadrado, M. D., Corchero, C., 2018. On optimal participation in the electricity markets of wind power plants with battery energy storage systems. Computers & Operations Research 96, 316-329. https://doi.org/10.1016/j.cor.2018.03.004 es_ES
dc.description.references Holmström, K., Göran, A. O., Edvall, M. M., 2010. User's Guide for TOMLAB 7. [Online]. Available: https://tomopt.com/docs/TOMLAB.pdf. Accessed on: Sep. 20, 2020. es_ES
dc.description.references Hou, W., Liu, Z., Ma, L., Wang, L., 2020. A real-time rolling horizon chance constrained optimization model for energy hub scheduling. Sustainable Cities and Society 62, 102417. https://doi.org/10.1016/j.scs.2020.102417 es_ES
dc.description.references Huang, W., Zhang, N., Yang, J., Wang, Y., Kang, C., 2019. Optimal configuration planning of multi-energy systems considering distributed renewable energy. IEEE Transactions on Smart Grid 10 (2), 1452-1464. https://doi.org/10.1109/TSG.2017.2767860 es_ES
dc.description.references International Business Machines Corporation (IBM), 2019. IBM ILOG CPLEX Optimization Studio. [Online]. Available: https://www.ibm.com/ es-es/products/ilog-cplex-optimization-studio. Accessed on: Sep. 20, 2020. es_ES
dc.description.references Jamalzadeh, F., Mirzahosseini, A. H., Faghihi, F., Panahi, M., 2020. Optimal operation of energy hub system using hybrid stochastic-interval optimization approach. Sustainable Cities and Society 54, 101998. https://doi.org/10.1016/j.scs.2019.101998 es_ES
dc.description.references Jiang, Y., Xu, J., Sun, Y., Wei, C., Wang, J., Ke, D., Li, X., Yang, J., Peng, X., Tang, B., 2017. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system. Applied Energy 190, 1126-1137. https://doi.org/10.1016/j.apenergy.2017.01.030 es_ES
dc.description.references Ju, L., Zhao, R., Tan, Q., Lu, Y., Tan, Q., Wang, W., 2019. A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response. Applied Energy 250, 1336-1355. https://doi.org/10.1016/j.apenergy.2019.05.027 es_ES
dc.description.references Klessmann, C., Held, A., Rathmann, M., Ragwitz, M., 2011. Status and perspectives of renewable energy policy and deployment in the European Union""What is needed to reach the 2020 targets? Energy policy 39 (12), 7637-7657. https://doi.org/10.1016/j.enpol.2011.08.038 es_ES
dc.description.references Kong, X., Xiao, J., Wang, C., Cui, K., Jin, Q., Kong, D., 2019. Bi-level multitime scale scheduling method based on bidding for multi-operator virtual power plant. Applied Energy 249, 178-189. https://doi.org/10.1016/j.apenergy.2019.04.130 es_ES
dc.description.references Koraki, D., Strunz, K., 2018. Wind and solar power integration in electricity markets and distribution networks through service-centric virtual power plants. IEEE Transactions on Power Systems 33 (1), 473-485. https://doi.org/10.1109/TPWRS.2017.2710481 es_ES
dc.description.references Kriechbaum, L., Scheiber, G., Kienberger, T., 2018. Grid-based multi-energy systems-modelling, assessment, open source modelling frameworks and challenges. Energy, Sustainability and Society 8 (35), 1-19. https://doi.org/10.1186/s13705-018-0176-x es_ES
dc.description.references Kyriakarakos, G., Dounis, A., Rozakis, S., Arvanitis, K., Papadakis, G., 2011. Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel. Applied Energy 88 (12). https://doi.org/10.1016/j.apenergy.2011.05.038 es_ES
dc.description.references Lekvan, A. A., Habibifar, R., Moradi, M., Khoshjahan, M., Nojavan, S., Jermsittiparsert, K., 2021. Robust optimization of renewable-based multi-energy micro-grid integrated with flexible energy conversion and storage devices. Sustainable Cities and Society 64, 102532. https://doi.org/10.1016/j.scs.2020.102532 es_ES
dc.description.references Li, H., Rezvani, A., Hu, J., Ohshima, K., 2021. Optimal day-ahead scheduling of microgrid with hybrid electric vehicles using MSFLA algorithm considering control strategies. Sustainable Cities and Society 66, 102681. https://doi.org/10.1016/j.scs.2020.102681 es_ES
dc.description.references Li, P., Liu, Y., Xin, H., Jiang, X., 2018. A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Transactions on Industrial Informatics 14 (10), 4343-4352. https://doi.org/10.1109/TII.2017.2788868 es_ES
dc.description.references Liang, Z., Alsafasfeh, Q., Jin, T., Pourbabak, H., Su, W., 2019. Risk-constrained optimal energy management for virtual power plants considering correlated demand response. IEEE Transactions on Smart Grid 10 (2), 1577-1587. https://doi.org/10.1109/TSG.2017.2773039 es_ES
dc.description.references Liu, C., Wang, D., Yin, Y., 2019. Two-stage optimal economic scheduling for commercial building multi-energy system through internet of things. IEEE Access 7, 174562-174572. https://doi.org/10.1109/ACCESS.2019.2957267 es_ES
dc.description.references Liu, J., Wang, A., Song, C., Tao, R., Wang, X., 2020. Cooperative operation for integrated multi-energy system considering transmission losses. IEEE Access 8, 96934-96945. https://doi.org/10.1109/ACCESS.2020.2996913 es_ES
dc.description.references Liu, X., Mancarella, P., 2016. Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems. Applied Energy 167, 336-352. https://doi.org/10.1016/j.apenergy.2015.08.089 es_ES
dc.description.references Löfberg, J., 2004. YALMIP : a toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation. pp. 284-289. DOI: 10.1109/cacsd.2004.1393890 es_ES
dc.description.references Long, S., Marjanovic, O., Parisio, A., 2019. Generalised control-oriented modelling framework for multi-energy systems. Applied Energy 235, 320-331. https://doi.org/10.1016/j.apenergy.2018.10.074 es_ES
dc.description.references Lu, S., Gu, W., Zhou, J., Zhang, X., Wu, C., 2018. Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy. Energy 152, 358-370. https://doi.org/10.1016/j.energy.2018.03.088 es_ES
dc.description.references Luo, X., Xia, J., Liu, Y., 2021. Extraction of dynamic operation strategy for standalone solar-based multi-energy systems: A method based on decision tree algorithm. Sustainable Cities and Society 70, 102917. https://doi.org/10.1016/j.scs.2021.102917 es_ES
dc.description.references Mancarella, P., 2014. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 65, 1-17. https://doi.org/10.1016/j.energy.2013.10.041 es_ES
dc.description.references Mansour-Saatloo, A., Mirzaei, M. A., Mohammadi-Ivatloo, B., Zare, K., 2020. A risk-averse hybrid approach for optimal participation of powerto-hydrogen technology-based multi-energy microgrid in multi-energy markets. Sustainable Cities and Society 63, 102421. https://doi.org/10.1016/j.scs.2020.102421 es_ES
dc.description.references Mansouri, S. A., Ahmarinejad, A., Nematbakhsh, E., Javadi, M. S., Jordehi, A. R., Catalão, J. P., 2021. Energy management in microgrids including smart homes: A multi-objective approach. Sustainable Cities and Society 69, 102852. https://doi.org/10.1016/j.scs.2021.102852 es_ES
dc.description.references Marnay, C., Venkataramanan, G., Stadler, M., Siddiqui, A., Firestone, R., Chandran, B., 2008. Optimal technology selection and operation of commercialbuilding microgrids. IEEE Transactions on Power Systems 23 (3), 975-982. https://doi.org/10.1109/TPWRS.2008.922654 es_ES
dc.description.references Maroufmashat, A., Taqvi, S. T., Miragha, A., Fowler, M., Elkamel, A., 2019. Modeling and optimization of energy hubs: A comprehensive review. Inventions 4 (3), 50. https://doi.org/10.3390/inventions4030050 es_ES
dc.description.references Martinez Cesena, E. A., Mancarella, P., 2019. Energy systems integration in smart districts: Robust optimisation of multi-energy flows in integrated electricity, heat and gas networks. IEEE Transactions on Smart Grid 10 (1), 1122-1131. https://doi.org/10.1109/TSG.2018.2828146 es_ES
dc.description.references Mavromatidis, G., Petkov, I., 2021. Mango: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems. Applied Energy 288, 116585. https://doi.org/10.1016/j.apenergy.2021.116585 es_ES
dc.description.references Mehdi, M., Kim, C., Saad, M., 2020. Robust centralized control for dc islanded microgrid considering communication network delay. IEEE Access 8, 77765-77778. https://doi.org/10.1109/ACCESS.2020.2989777 es_ES
dc.description.references Mehrabadi, R. A., Moghaddam, M. P., Sheikh-El-Eslami, M. K., 2020. Regulatory-intervented sustainable generation expansion planning in multielectricity markets. Sustainable Cities and Society 52, 101794. https://doi.org/10.1016/j.scs.2019.101794 es_ES
dc.description.references Menezes Morato, M., da Costa Mendes, P. R., Normey-Rico, J. E., Bordons, C., 2017. Optimal operation of hybrid power systems including renewable sources in the sugar cane industry. IET Renewable Power Generation 11 (8), 1237-1245. https://doi.org/10.1049/iet-rpg.2016.0443 es_ES
dc.description.references Minutillo, M., Perna, A., Sorce, A., 2019. Combined hydrogen, heat and electricity generation via biogas reforming: Energy and economic assessments. International Journal of Hydrogen Energy 44 (43), 23880-23898. https://doi.org/10.1016/j.ijhydene.2019.07.105 es_ES
dc.description.references Mirzapour-Kamanaj, A., Majidi, M., Zare, K., Kazemzadeh, R., 2020. Optimal strategic coordination of distribution networks and interconnected energy hubs: A linear multi-follower bi-level optimization model. International Journal of Electrical Power & Energy Systems 119, 105925. https://doi.org/10.1016/j.ijepes.2020.105925 es_ES
dc.description.references Mohamed, M. A., Abdullah, H. M., El-Meligy, M. A., Sharaf, M., Soliman, A. T., Hajjiah, A., 2021. A novel fuzzy cloud stochastic framework for energy management of renewable microgrids based on maximum deployment of electric vehicles. International Journal of Electrical Power & Energy Systems 129, 106845. https://doi.org/10.1016/j.ijepes.2021.106845 es_ES
dc.description.references Mohammadi, M., Ghasempour, R., Astaraei, F. R., Ahmadi, E., Aligholian, A., Toopshekan, A., 2018. Optimal planning of renewable energy resource for a residential house considering economic and reliability criteria. International Journal of Electrical Power & Energy Systems 96, 261-273. https://doi.org/10.1016/j.ijepes.2017.10.017 es_ES
dc.description.references Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Yousefi, H., 2017a. Energy hub: From a model to a concept""A review. Renewable and Sustainable Energy Reviews 80, 1512-1527. https://doi.org/10.1016/j.rser.2017.07.030 es_ES
dc.description.references Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Yousefi, H., Jalilinasrabady, S., 2017b. Optimal scheduling of energy hubs in the presence of uncertainty""A review. Journal of Energy Management and Technology 1 (1), 1-17. https://doi.org/10.22109/jemt.2017.49432 es_ES
dc.description.references Mohammed, A., Refaat, S. S., Bayhan, S., Abu-Rub, H., 2019. AC microgrid control and management strategies: Evaluation and review. IEEE Power Electronics Magazine 6 (2), 18-31. https://doi.org/10.1109/MPEL.2019.2910292 es_ES
dc.description.references Nasiri, N., Yazdankhah, A. S., Mirzaei, M. A., Loni, A., Mohammadi-Ivatloo, B., Zare, K., Marzband, M., 2020. A bi-level market-clearing for coordinated regional-local multi-carrier systems in presence of energy storage technologies. Sustainable Cities and Society 63, 102439. https://doi.org/10.1016/j.scs.2020.102439 es_ES
dc.description.references Naval, N., Sánchez, R., Yusta, J. M., 2020. A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation. Renewable Energy 151, 57-69. https://doi.org/10.1016/j.renene.2019.10.144 es_ES
dc.description.references Nosratabadi, S. M., Jahandide, M., Guerrero, J. M., 2021. Robust scenariobased concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of chp nonlinear model with triple operational zones. Sustainable Cities and Society 68, 102795. https://doi.org/10.1016/j.scs.2021.102795 es_ES
dc.description.references Ombach, J., 2014. A short introduction to stochastic optimization. Schedae Informaticae 23, 9-20. https://doi.org/10.4467/20838476si.14.001.3018 es_ES
dc.description.references Orehounig, K., Evins, R., Dorer, V., 2015. Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Applied Energy 154, 277-289. https://doi.org/10.1016/j.apenergy.2015.04.114 es_ES
dc.description.references Pandžic, H., Kuzle, I., Capuder, T., 2013. Virtual power plant mid-term dispatch' optimization. Applied Energy 101, 134-141. https://doi.org/10.1016/j.apenergy.2012.05.039 es_ES
dc.description.references Parisio, A., Del Vecchio, C., Vaccaro, A., 2012. A robust optimization approach to energy hub management. International Journal of Electrical Power & Energy Systems 42 (1), 98-104. https://doi.org/10.1016/j.ijepes.2012.03.015 es_ES
dc.description.references Pasetti, M., Rinaldi, S., Manerba, D., Pasetti, M., Rinaldi, S., Manerba, D., 2018. A virtual power plant architecture for the demand-side management of smart prosumers. Applied Sciences 8 (3), 432. https://doi.org/10.3390/app8030432 es_ES
dc.description.references Pei, W., Ma, X., Deng, W., Chen, X., Sun, H., Li, D., 2019. Industrial multienergy and production management scheme in cyber-physical environments: A case study in a battery manufacturing plant. IET Cyber-Physical Systems: Theory & Applications 4 (1), 13-21. https://doi.org/10.1049/iet-cps.2018.5029 es_ES
dc.description.references Phurailatpam, C., Rajpurohit, B. S., Wang, L., 2018. Planning and optimization of autonomous DC microgrids for rural and urban applications in India. Renewable and Sustainable Energy Reviews 82, 194-204. https://doi.org/10.1016/j.rser.2017.09.022 es_ES
dc.description.references Pudjianto, D., Ramsay, C., Strbac, G., 2007. Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation 1 (1), 10-16. https://doi.org/10.1049/iet-rpg:20060023 es_ES
dc.description.references Ramos-Teodoro, J., 2021. Estrategias de gestión energética en entornos productivos con apoyo de energía solar. Tesis doctoral, Universidad de Almería. es_ES
dc.description.references Ramos-Teodoro, J., Gil, J. D., Roca, L., Rodríguez, F., Berenguel, M., 2021. Optimal water management in agro-industrial districts: An energy hub's case study in the southeast of spain. Processes 9 (2), 333. https://doi.org/10.3390/pr9020333 es_ES
dc.description.references Ramos-Teodoro, J., Rodríguez, F., Berenguel, M., Torres, J. L., 2018. Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example. Applied Energy 229, 537-550. https://doi.org/10.1016/j.apenergy.2018.08.007 es_ES
dc.description.references Rodríguez-Blanco, T., Sarabia, D., De Prada, C., 2018. Optimización en tiempo real utilizando la metodología de adaptación de modificadores. Revista Iberoamericana de Automática e Informática industrial 15 (2), 133-144. https://doi.org/10.4995/riai.2017.8846 es_ES
dc.description.references Sadeghi, H., Rashidinejad, M., Moeini-Aghtaie, M., Abdollahi, A., 2019. The energy hub: An extensive survey on the state-of-the-art. Applied Thermal Engineering 161, 114071. https://doi.org/10.1016/j.applthermaleng.2019.114071 es_ES
dc.description.references Sadeghian, O., Oshnoei, A., Khezri, R., Muyeen, S., 2020. Risk-constrained stochastic optimal allocation of energy storage system in virtual power plants. Journal of Energy Storage 31, 101732. https://doi.org/10.1016/j.est.2020.101732 es_ES
dc.description.references Sadeghian, O., Shotorbani, A. M., Mohammadi-ivatloo, B., 2019. Generation maintenance scheduling in virtual power plants. IET Generation, Transmission & Distribution 13 (12), 2584-2596. https://doi.org/10.1049/iet-gtd.2018.6751 es_ES
dc.description.references Sahinidis, N. V., 2019. BARON v. 2019.7.13: Global Optimization of MixedInteger Nonlinear Programs, User's Manual. [Online]. Available: http:// www.minlp.com/downloads/docs/baron%20manual.pdf. Accessed on: Sep. 20, 2020. es_ES
dc.description.references Salehpour, M. J., Alishavandi, A. M., Hossain, M. J., Rostami, S. M. H., Wang, J., Yu, X., 2021. A stochastic decentralized model for the privately interactive operation of a multi-carrier energy system. Sustainable Cities and Society 64, 102551. https://doi.org/10.1016/j.scs.2020.102551 es_ES
dc.description.references Suman, G. K., Guerrero, J. M., Roy, O. P., 2021. Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach. Sustainable Cities and Society 67, 102723. https://doi.org/10.1016/j.scs.2021.102723 es_ES
dc.description.references Tahir, M. F., Haoyong, C., Mehmood, K., Ali, N., Bhutto, J. A., 2019. Integrated energy system modeling of china for 2020 by incorporating demand response, heat pump and thermal storage. IEEE Access 7, 40095-40108. https://doi.org/10.1109/ACCESS.2019.2905684 es_ES
dc.description.references Taylor, M., Long, S., Marjanovic, O., Parisio, A., 2021. Model predictive control of smart districts with fifth generation heating and cooling networks. IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2021.3082405 es_ES
dc.description.references The MathWorks, Inc., 2019. MATLAB R2019a. [Online]. Available: http: //es.mathworks.com/products/matlab/. Accessed on: Sep. 20, 2020. es_ES
dc.description.references Torres-Moreno, J., Gimenez-Fernandez, A., Perez-Garcia, M., Rodriguez, F., 2018. Energy management strategy for micro-grids with PV-battery systems and electric vehicles. Energies 11 (3), 522. https://doi.org/10.3390/en11030522 es_ES
dc.description.references Vahedipour-Dahraie, M., Rashidizade-Kermani, H., Shafie-khah, M., Catalão, J. P., 2020. Risk-averse optimal energy and reserve scheduling for virtual power plants incorporating demand response programs. IEEE Transactions on Smart Grid. DOI: 10.1109/TSG.2020.3026971 es_ES
dc.description.references van Beuzekom, I., Gibescu, M., Slootweg, J., 2015. A review of multi-energy system planning and optimization tools for sustainable urban development. In: Proceedings of the 2015 IEEE Eindhoven PowerTech. IEEE, pp. 1-7. https://doi.org/10.1109/PTC.2015.7232360 es_ES
dc.description.references Velarde, P., Valverde, L., Maestre, J., Ocampo-Martinez, C., Bordons, C., 2017. On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid. Journal of Power Sources 343, 161-173. https://doi.org/10.1016/j.jpowsour.2017.01.015 es_ES
dc.description.references Vergara-Dietrich, J. D., Menezes Morato, M., da Costa Mendes, P. R., Cani, A. A., Normey-Rico, J. E., Bordons, C., 2019. Advanced chance-constrained predictive control for the efficient energy management of renewable power systems. Journal of Process Control 74, 120-132. https://doi.org/10.1016/j.jprocont.2017.11.003 es_ES
dc.description.references Wang, H., Riaz, S., Mancarella, P., 2020. Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization. Applied Energy 259, 114142. https://doi.org/10.1016/j.apenergy.2019.114142 es_ES
dc.description.references Wang, J., Hu, Z., Xie, S., 2019. Expansion planning model of multi-energy system with the integration of active distribution network. Applied Energy 253, 113517. https://doi.org/10.1016/j.apenergy.2019.113517 es_ES
dc.description.references Wang, Y., Zhang, N., Zhuo, Z., Kang, C., Kirschen, D., 2018. Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied Energy 210, 1141-1150. https://doi.org/10.1016/j.apenergy.2017.08.114 es_ES
dc.description.references Wei, C., Xu, J., Liao, S., Sun, Y., Jiang, Y., Ke, D., Zhang, Z., Wang, J., 2018. A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy. Applied Energy 224, 659-670. https://doi.org/10.1016/j.apenergy.2018.05.032 es_ES
dc.description.references Wenzel, S., Paulen, R., Stojanovski, G., Krämer, S., Beisheim, B., Engell, S., 2016. Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. Automatisierungstechnik 64 (6), 428-442. https://doi.org/10.1515/auto-2016-0003 es_ES
dc.description.references Wirtz, M., Hahn, M., Schreiber, T., Müller, D., 2021. Design optimization of multi-energy systems using mixed-integer linear programming: Which model complexity and level of detail is sufficient? Energy Conversion and Management 240, 114249. https://doi.org/10.1016/j.enconman.2021.114249 es_ES
dc.description.references Wozabal, D., Rameseder, G., 2020. Optimal bidding of a virtual power plant on the Spanish day-ahead and intraday market for electricity. European Journal of Operational Research 280 (2), 639-655. es_ES
dc.description.references https://doi.org/10.1016/j.ejor.2019.07.022 es_ES
dc.description.references Yu, S., Fang, F., Liu, Y., Liu, J., 2019. Uncertainties of virtual power plant: Problems and countermeasures. Applied Energy 239, 454-470. https://doi.org/10.1016/j.apenergy.2019.01.224 es_ES
dc.description.references Yuan, Z., Wogrin, S., Hesamzadeh, M. R., 2017. Towards the Power Synergy Hub (PSHub): Coordinating the energy dispatch of super grid by modified Benders decomposition. Applied Energy 205, 1419-1434. https://doi.org/10.1016/j.apenergy.2017.09.086 es_ES
dc.description.references Zamani, A. G., Zakariazadeh, A., Jadid, S., 2016. Day-ahead resource scheduling of a renewable energy based virtual power plant. Applied Energy 169, 324-340. https://doi.org/10.1016/j.apenergy.2016.02.011 es_ES
dc.description.references Zamanloo, S., Abyaneh, H. A., Nafisi, H., Azizi, M., 2021. Optimal two-level active and reactive energy management of residential appliances in smart homes. Sustainable Cities and Society, 102972. https://doi.org/10.1016/j.scs.2021.102972 es_ES
dc.description.references Zeng, L., Sun, Y., Zhou, X., Li, B., Qi, B., 2018. Demand dispatch in cyberphysical load aggregation system with multilevel incentives. Journal of Modern Power Systems and Clean Energy 6 (5), 968-978. https://doi.org/10.1007/s40565-018-0451-z es_ES
dc.description.references Zhang, G., Jiang, C., Wang, X., 2019. Comprehensive review on structure and operation of virtual power plant in electrical system. IET Generation, Transmission & Distribution 13 (2), 145-156. https://doi.org/10.1049/iet-gtd.2018.5880 es_ES
dc.description.references Zhang, Y., Zhang, T., Wang, R., Liu, Y., Guo, B., 2015. Optimal operation of a smart residential microgrid based on model predictive control by considering uncertainties and storage impacts. Solar Energy 122, 1052-1065. https://doi.org/10.1016/j.solener.2015.10.027 es_ES
dc.description.references Zhong, W., Yang, C., Xie, K., Xie, S., Zhang, Y., 2018. ADMM-based distributed auction mechanism for energy hub scheduling in smart buildings. IEEE Access 6, 45635-45645. https://doi.org/10.1109/ACCESS.2018.2865625 es_ES
dc.description.references Zia, M. F., Benbouzid, M., Elbouchikhi, E., Muyeen, S., Techato, K., Guerrero, J. M., 2020. Microgrid transactive energy: Review, architectures, distributed ledger technologies, and market analysis. IEEE Access 8, 19410-19432. https://doi.org/10.1109/ACCESS.2020.2968402 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem