- -

Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales

Mostrar el registro completo del ítem

Ramos-Teodoro, J.; Rodríguez, F. (2022). Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales. Revista Iberoamericana de Automática e Informática industrial. 19(3):233-253. https://doi.org/10.4995/riai.2022.16497

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186921

Ficheros en el ítem

Metadatos del ítem

Título: Producción, control y gestión distribuida de energía: una revisión de terminología y enfoques habituales
Otro titulo: Distributed energy production, control and management: a review of terminology and common approaches
Autor: Ramos-Teodoro, Jerónimo Rodríguez, Francisco
Fecha difusión:
Resumen:
[EN] Over the last few decades, lines of research related to distributed generation and energy management have given rise to the introduction of novel terms referring to continuous production systems and their optimal ...[+]


[ES] Durante las últimas décadas, las líneas de investigación relacionadas con la producción distribuida y la gestión energética han dado lugar a la introducción de términos nuevos que aluden a sistemas de producción ...[+]
Palabras clave: Microgrids , Virtual power plants , Energy hubs , Multi-energy systems , Distributed multi-generation , Economic dispatch , Energy management , Model-based predictive control , Control and scheduling , Microrredes , Plantas de energía virtuales , Concentradores de energía , Sistemas multienergía , Multigeneración distribuida , Reparto económico , Gestión de energía , Control predictivo basado en modelo , Control y planificación
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16497
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16497
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85007-R/ES/CONTROL Y GESTION OPTIMA DE RECURSOS HETEROGENEOS EN DISTRITOS PRODUCTIVOS AGROINDUSTRIALES INTEGRANDO ENERGIAS RENOVABLES/
Agradecimientos:
Este trabajo ha sido financiado con el Proyecto R+D+i del Plan Nacional DPI2017-85007-R del Ministerio de Ciencia, Innovación y Universidades y Fondos FEDER.
Tipo: Artículo

References

Alahyari, A., Ehsan, M., Mousavizadeh, M., 2019. A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A selfscheduling optimization considering price, renewable generation, and electric vehicles uncertainties. Journal of Energy Storage 25, 100812. https://doi.org/10.1016/j.est.2019.100812

AlHajri, I., Ahmadian, A., Elkamel, A., 2021. Stochastic day-ahead unit commitment scheduling of integrated electricity and gas networks with hydrogen energy storage (HES), plug-in electric vehicles (PEVs) and renewable energies. Sustainable Cities and Society 67, 102736. https://doi.org/10.1016/j.scs.2021.102736

Ali, H., Hussain, A., Bui, V., Kim, H., 2020. Consensus algorithm-based distributed operation of microgrids during grid-connected and islanded modes. IEEE Access 8, 78151-78165. https://doi.org/10.1109/ACCESS.2020.2989457 [+]
Alahyari, A., Ehsan, M., Mousavizadeh, M., 2019. A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A selfscheduling optimization considering price, renewable generation, and electric vehicles uncertainties. Journal of Energy Storage 25, 100812. https://doi.org/10.1016/j.est.2019.100812

AlHajri, I., Ahmadian, A., Elkamel, A., 2021. Stochastic day-ahead unit commitment scheduling of integrated electricity and gas networks with hydrogen energy storage (HES), plug-in electric vehicles (PEVs) and renewable energies. Sustainable Cities and Society 67, 102736. https://doi.org/10.1016/j.scs.2021.102736

Ali, H., Hussain, A., Bui, V., Kim, H., 2020. Consensus algorithm-based distributed operation of microgrids during grid-connected and islanded modes. IEEE Access 8, 78151-78165. https://doi.org/10.1109/ACCESS.2020.2989457

Alipour, M., Zare, K., Abapour, M., 2018. MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Transactions on Industrial Informatics 14 (1), 79-88. https://doi.org/10.1109/TII.2017.2730440

Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., Evins, R., 2015. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews 52, 1391-1404. https://doi.org/10.1016/j.rser.2015.07.123

Bakken, B. H., Skjelbred, H. I., Wolfgang, O., 2007. eTransport: Investment planning in energy supply systems with multiple energy carriers. Energy 32 (9), 1676-1689. https://doi.org/10.1016/j.energy.2007.01.003

Baringo, A., Baringo, L., Arroyo, J. M., 2019. Day-ahead self-scheduling of a virtual power plant in energy and reserve electricity markets under uncertainty. IEEE Transactions on Power Systems 34 (3), 1881-1894. https://doi.org/10.1109/TPWRS.2018.2883753

Batic, M., Tomasevic, N., Beccuti, G., Demiray, T., Vranes, S., 2016. Combined energy hub optimisation and demand side management for buildings. Energy and Buildings 127, 229-241. https://doi.org/10.1016/j.enbuild.2016.05.087

Beigvand, S. D., Abdi, H., La Scala, M., 2017. A general model for energy hub economic dispatch. Applied Energy 190, 1090-1111. https://doi.org/10.1016/j.apenergy.2016.12.126

Bisschop, J., Meeraus, A., 1982. On the development of a general algebraic modeling system in a strategic planning environment. In: Applications. Vol. 20 of Mathematical programming studies. Springer Berlin Heidelberg, pp. 1- 29. https://doi.org/10.1007/BFb0121223

Bolzoni, A., Parisio, A., Todd, R., Forsyth, A., 2021. Model predictive control for optimizing the flexibility of sustainable energy assets: An experimental case study. International Journal of Electrical Power & Energy Systems 129, 106822. https://doi.org/10.1016/j.ijepes.2021.106822

Bordons, C., Garcia-Torres, F., Ridao, M. Á., 2020. Control predictivo en microrredes interconectadas y con vehículos eléctricos. Revista Iberoamericana de Automática e Informática industrial 17 (3), 239-253. https://doi.org/10.4995/riai.2020.13304

Bozchalui, M. C., Cañizares, C. A., Bhattacharya, K., 2015. Optimal energy management of greenhouses in smart grids. IEEE Transactions on Smart Grid 6 (2), 827-835. https://doi.org/10.1109/TSG.2014.2372812

Brahman, F., Honarmand, M., Jadid, S., 2015. Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings 90, 65-75. https://doi.org/10.1016/j.enbuild.2014.12.039

Braun, M., Strauss, P., 2008. A review on aggregation approaches of controllable distributed energy units in electrical power systems. International Journal of Distributed Energy Resources 4 (4), 297-319.

Burnham, J. F., 2006. Scopus database: a review. Biomedical digital libraries 3 (1), 1. https://doi.org/10.1186/1742-5581-3-1

Chen, B., Wang, J., Shahidehpour, M., 2018. Cyber-physical perspective on smart grid design and operation. IET Cyber-Physical Systems: Theory & Applications 3 (3), 129-141. https://doi.org/10.1049/iet-cps.2017.0143

Chicco, G., Mancarella, P., 2009. Distributed multi-generation: A comprehensive view. Renewable and Sustainable Energy Reviews 13 (3), 535-551. https://doi.org/10.1016/j.rser.2007.11.014

Clegg, S., Mancarella, P., 2019a. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part I: Highresolution spatial and temporal heat demand modelling. Energy 184, 180- 190. https://doi.org/10.1016/j.energy.2018.02.079

Clegg, S., Mancarella, P., 2019b. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part II: Transmission network analysis and low carbon technology and resilience case studies. Energy 184, 191-203. https://doi.org/10.1016/j.energy.2018.02.078

Crawley, D. B., Pedersen, C. O., Lawrie, L. K., Winkelmann, F. C., 2000. Energyplus: Energy simulation program. ASHRAE Journal 42, 49-56.

Czyzyk, J., Mesnier, M. P., Moré, J. J., 1998. The NEOS server. IEEE Journal on Computational Science and Engineering 5 (3), 68""-75. https://doi.org/10.1109/99.714603

Dagoumas, A. S., Koltsaklis, N. E., 2019. Review of models for integrating renewable energy in the generation expansion planning. Applied Energy 242, 1573-1587. https://doi.org/10.1016/j.apenergy.2019.03.194

Dall'Anese, E., Guggilam, S. S., Simonetto, A., Chen, Y. C., Dhople, S. V., 2018. Optimal regulation of virtual power plants. IEEE Transactions on Power Systems 33 (2), 1868-1881. https://doi.org/10.1109/TPWRS.2017.2741920

Dolan, E. D., 2001. The NEOS server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory. https://doi.org/10.2172/822567

Ehsan, A., Yang, Q., 2018. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy 210, 44-59. https://doi.org/10.1016/j.apenergy.2017.10.106

Elkamel, M., Ahmadian, A., Diabat, A., Zheng, Q. P., 2021. Stochastic optimization for price-based unit commitment in renewable energy-based personal rapid transit systems in sustainable smart cities. Sustainable Cities and Society 65, 102618. https://doi.org/10.1016/j.scs.2020.102618

Evins, R., 2015. Multi-level optimization of building design, energy system sizing and operation. Energy 90, 1775-1789. https://doi.org/10.1016/j.energy.2015.07.007

Evins, R., Orehounig, K., Dorer, V., Carmeliet, J., 2014. New formulations of the 'energy hub' model to address operational constraints. Energy 73, 387- 398. https://doi.org/10.1016/j.energy.2014.06.029

Fabrizio, E., Branciforti, V., Costantino, A., Filippi, M., Barbero, S., Tecco, G., Mollo, P., Molino, A., 2017. Monitoring and managing of a micro-smart grid for renewable sources exploitation in an agro-industrial site. Sustainable Cities and Society 28, 88-100. https://doi.org/10.1016/j.scs.2016.08.026

Fabrizio, E., Corrado, V., Filippi, M., 2010. A model to design and optimize multi-energy systems in buildings at the design concept stage. Renewable Energy 35 (3), 644-655. https://doi.org/10.1016/j.renene.2009.08.012

Fan, H., Yuan, Q., Xia, S., Lu, J., Li, Z., 2020. Optimally coordinated expansion planning of coupled electricity, heat and natural gas infrastructure for multi-energy system. IEEE Access 8, 91139-91149. https://doi.org/10.1109/ACCESS.2020.2993035

Fang, Y., Zhao, S., Wang, N., Li, Z., Liu, J., 2019. Power system stochastic optimal dispatch considering thermal and electrical coordination. International Journal of Electrical Power & Energy Systems 110, 772-780. https://doi.org/10.1016/j.ijepes.2019.03.065

Faraji, J., Hashemi-Dezaki, H., Ketabi, A., 2021. Stochastic operation and scheduling of energy hub considering renewable energy sources' uncertainty and n-1 contingency. Sustainable Cities and Society 65, 102578. https://doi.org/10.1016/j.scs.2020.102578

Farhangi, H., 2010. The path of the smart grid. IEEE Power and Energy Magazine 8 (1), 18-28. https://doi.org/10.1109/MPE.2009.934876

Firouzmakan, P., Hooshmand, R.-A., Bornapour, M., Khodabakhshian, A., 2019. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renewable and Sustainable Energy Reviews 108, 355-368. https://doi.org/10.1016/j.rser.2019.04.001

Foroughi, M., Pasban, A., Moeini-Aghtaie, M., Fayaz-Heidari, A., 2021. A bilevel model for optimal bidding of a multi-carrier technical virtual power plant in energy markets. International Journal of Electrical Power & Energy Systems 125, 106397. https://doi.org/10.1016/j.ijepes.2020.106397

Fourer, R., Gay, D. M., Kernighan, B., 1989. AMPL: A mathematical programming language. In: Wallace, S. W. (Ed.), Algorithms and model formulations in mathematical programming. Springer-Verlag, Berlin, Heidelberg, pp. 150-151. https://doi.org/10.1007/978-3-642-83724-1_12

Freire, V. A., De Arruda, L. V. R., Bordons, C., Márquez, J. J., 2020. Optimal demand response management of a residential microgrid using model predictive control. IEEE Access 8, 228264-228276. https://doi.org/10.1109/ACCESS.2020.3045459

Fu, Y., Lu, Z., Hu, W., Wu, S., Wang, Y., Dong, L., Zhang, J., 2019. Research on joint optimal dispatching method for hybrid power system considering system security. Applied Energy 238, 147-63. https://doi.org/10.1016/j.apenergy.2019.01.034

Gabrielli, P., Gazzani, M., Martelli, E., Mazzotti, M., 2018. Optimal design of multi-energy systems with seasonal storage. Applied Energy 219, 408-424. https://doi.org/10.1016/j.apenergy.2017.07.142

García, C. E., Prett, D. M., Morari, M., 1989. Model predictive control: Theory and practice""A survey. Automatica 25 (3), 335-348. https://doi.org/10.1016/0005-1098(89)90002-2

Garcia-Torres, F., Vilaplana, D. G., Bordons, C., Roncero-Sanchez, P., Ridao, M. A., 2019. Optimal management of microgrids with external agents including battery/fuel cell electric vehicles. IEEE Transactions on Smart Grid 10 (4), 4299-4308. https://doi.org/10.1109/TSG.2018.2856524

Geidl, M., Andersson, G., 2007. Optimal power flow of multiple energy carriers. IEEE Transactions on Power Systems 22 (1), 145-155. https://doi.org/10.1109/TPWRS.2006.888988

Geidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G., Fröhlich, K., 2006. Energy hubs for the future. IEEE Power and Energy Magazine 5 (1), 24-30. https://doi.org/10.1109/MPAE.2007.264850

Ghaem Sigarchian, S., Orosz, M. S., Hemond, H. F., Malmquist, A., 2016. Optimum design of a hybrid PV-CSP-LPG microgrid with particle swarm optimization technique. Applied Thermal Engineering 109, 1031-1036. https://doi.org/10.1016/j.applthermaleng.2016.05.119

Ghaemi, S., Salehi, J., Moeini-Aghtaie, M., 2021. Estimating abilities of distributed energy resources in providing flexible ramp products for active distribution networks. Sustainable Cities and Society 65, 102593. https://doi.org/10.1016/j.scs.2020.102593

Ghedamsi, K., Aouzellag, D., 2010. Improvement of the performances for wind energy conversions systems. International Journal of Electrical Power & Energy Systems 32 (9), 936-945. https://doi.org/10.1016/j.ijepes.2010.02.012

Gil, J. D., Álvarez, J., Roca, L., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2019. Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse. Energy Conversion and Management 198, 111791. https://doi.org/10.1016/j.enconman.2019.111791

Givler, T., Lilienthal, P., 2005. Using HOMER software, NREL's micropower optimization model, to explore the role of gen-sets in small solar power systems""Case study: Sri Lanka. Tech. rep., National Renewable Energy Laboratory, Golden, Colorado, United States. https://doi.org/10.2172/15016073

Gong, X., Dong, F., Mohamed, M. A., Abdalla, O. M., Ali, Z. M., 2020. A secured energy management architecture for smart hybrid microgrids considering pem-fuel cell and electric vehicles. IEEE Access 8, 47807-47823. https://doi.org/10.1109/ACCESS.2020.2978789

Good, N., Mancarella, P., 2019. Flexibility in multi-energy communities with electrical and thermal storage: A stochastic, robust approach for multiservice demand response. IEEE Transactions on Smart Grid 10 (1), 503- 513. https://doi.org/10.1109/TSG.2017.2745559

Groissböck, M., 2019. Are open source energy system optimization tools mature enough for serious use? Renewable and Sustainable Energy Reviews 102, 234-248. https://doi.org/10.1016/j.rser.2018.11.020

Groover, M. P., 2015. Automation, production systems, and computerintegrated manufacturing, 4th Edition. Pearson.

Gropp, W., Moré, J. J., 1997. Optimization environments and the NEOS server. In: Buhman, M. D., Iserles, A. (Eds.), Approximation theory and optimization. Cambridge University Press, pp. 167-182.

Gu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W., Wu, Z., 2014. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. International Journal of Electrical Power & Energy Systems 54, 26-37. https://doi.org/10.1016/j.ijepes.2013.06.028

Guelpa, E., Bischi, A., Verda, V., Chertkov, M., Lund, H., 2019. Towards future infrastructures for sustainable multi-energy systems: A review. Energy 184, 2-21. https://doi.org/10.1016/j.energy.2019.05.057

Gurobi Optimization, LLC, 2019. Gurobi Optimizer Reference Manual. [Online]. Available: http://www.gurobi.com. Accessed on: Sep. 20, 2020. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C., 2007. Microgrids. IEEE Power and Energy Magazine 5 (4), 78-94. https://doi.org/10.1109/MPAE.2007.376583

Hemmati, M., Mirzaei, M. A., Abapour, M., Zare, K., Mohammadi-ivatloo, B., Mehrjerdi, H., Marzband, M., 2021. Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program. Sustainable Cities and Society 69, 102790. https://doi.org/10.1016/j.scs.2021.102790

Heredia, F. J., Cuadrado, M. D., Corchero, C., 2018. On optimal participation in the electricity markets of wind power plants with battery energy storage systems. Computers & Operations Research 96, 316-329. https://doi.org/10.1016/j.cor.2018.03.004

Holmström, K., Göran, A. O., Edvall, M. M., 2010. User's Guide for TOMLAB 7. [Online]. Available: https://tomopt.com/docs/TOMLAB.pdf. Accessed on: Sep. 20, 2020.

Hou, W., Liu, Z., Ma, L., Wang, L., 2020. A real-time rolling horizon chance constrained optimization model for energy hub scheduling. Sustainable Cities and Society 62, 102417. https://doi.org/10.1016/j.scs.2020.102417

Huang, W., Zhang, N., Yang, J., Wang, Y., Kang, C., 2019. Optimal configuration planning of multi-energy systems considering distributed renewable energy. IEEE Transactions on Smart Grid 10 (2), 1452-1464. https://doi.org/10.1109/TSG.2017.2767860

International Business Machines Corporation (IBM), 2019. IBM ILOG CPLEX Optimization Studio. [Online]. Available: https://www.ibm.com/ es-es/products/ilog-cplex-optimization-studio. Accessed on: Sep. 20, 2020.

Jamalzadeh, F., Mirzahosseini, A. H., Faghihi, F., Panahi, M., 2020. Optimal operation of energy hub system using hybrid stochastic-interval optimization approach. Sustainable Cities and Society 54, 101998. https://doi.org/10.1016/j.scs.2019.101998

Jiang, Y., Xu, J., Sun, Y., Wei, C., Wang, J., Ke, D., Li, X., Yang, J., Peng, X., Tang, B., 2017. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system. Applied Energy 190, 1126-1137. https://doi.org/10.1016/j.apenergy.2017.01.030

Ju, L., Zhao, R., Tan, Q., Lu, Y., Tan, Q., Wang, W., 2019. A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response. Applied Energy 250, 1336-1355. https://doi.org/10.1016/j.apenergy.2019.05.027

Klessmann, C., Held, A., Rathmann, M., Ragwitz, M., 2011. Status and perspectives of renewable energy policy and deployment in the European Union""What is needed to reach the 2020 targets? Energy policy 39 (12), 7637-7657. https://doi.org/10.1016/j.enpol.2011.08.038

Kong, X., Xiao, J., Wang, C., Cui, K., Jin, Q., Kong, D., 2019. Bi-level multitime scale scheduling method based on bidding for multi-operator virtual power plant. Applied Energy 249, 178-189. https://doi.org/10.1016/j.apenergy.2019.04.130

Koraki, D., Strunz, K., 2018. Wind and solar power integration in electricity markets and distribution networks through service-centric virtual power plants. IEEE Transactions on Power Systems 33 (1), 473-485. https://doi.org/10.1109/TPWRS.2017.2710481

Kriechbaum, L., Scheiber, G., Kienberger, T., 2018. Grid-based multi-energy systems-modelling, assessment, open source modelling frameworks and challenges. Energy, Sustainability and Society 8 (35), 1-19. https://doi.org/10.1186/s13705-018-0176-x

Kyriakarakos, G., Dounis, A., Rozakis, S., Arvanitis, K., Papadakis, G., 2011. Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel. Applied Energy 88 (12). https://doi.org/10.1016/j.apenergy.2011.05.038

Lekvan, A. A., Habibifar, R., Moradi, M., Khoshjahan, M., Nojavan, S., Jermsittiparsert, K., 2021. Robust optimization of renewable-based multi-energy micro-grid integrated with flexible energy conversion and storage devices. Sustainable Cities and Society 64, 102532. https://doi.org/10.1016/j.scs.2020.102532

Li, H., Rezvani, A., Hu, J., Ohshima, K., 2021. Optimal day-ahead scheduling of microgrid with hybrid electric vehicles using MSFLA algorithm considering control strategies. Sustainable Cities and Society 66, 102681. https://doi.org/10.1016/j.scs.2020.102681

Li, P., Liu, Y., Xin, H., Jiang, X., 2018. A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Transactions on Industrial Informatics 14 (10), 4343-4352. https://doi.org/10.1109/TII.2017.2788868

Liang, Z., Alsafasfeh, Q., Jin, T., Pourbabak, H., Su, W., 2019. Risk-constrained optimal energy management for virtual power plants considering correlated demand response. IEEE Transactions on Smart Grid 10 (2), 1577-1587. https://doi.org/10.1109/TSG.2017.2773039

Liu, C., Wang, D., Yin, Y., 2019. Two-stage optimal economic scheduling for commercial building multi-energy system through internet of things. IEEE Access 7, 174562-174572. https://doi.org/10.1109/ACCESS.2019.2957267

Liu, J., Wang, A., Song, C., Tao, R., Wang, X., 2020. Cooperative operation for integrated multi-energy system considering transmission losses. IEEE Access 8, 96934-96945. https://doi.org/10.1109/ACCESS.2020.2996913

Liu, X., Mancarella, P., 2016. Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems. Applied Energy 167, 336-352. https://doi.org/10.1016/j.apenergy.2015.08.089

Löfberg, J., 2004. YALMIP : a toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation. pp. 284-289. DOI: 10.1109/cacsd.2004.1393890

Long, S., Marjanovic, O., Parisio, A., 2019. Generalised control-oriented modelling framework for multi-energy systems. Applied Energy 235, 320-331. https://doi.org/10.1016/j.apenergy.2018.10.074

Lu, S., Gu, W., Zhou, J., Zhang, X., Wu, C., 2018. Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy. Energy 152, 358-370. https://doi.org/10.1016/j.energy.2018.03.088

Luo, X., Xia, J., Liu, Y., 2021. Extraction of dynamic operation strategy for standalone solar-based multi-energy systems: A method based on decision tree algorithm. Sustainable Cities and Society 70, 102917. https://doi.org/10.1016/j.scs.2021.102917

Mancarella, P., 2014. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 65, 1-17. https://doi.org/10.1016/j.energy.2013.10.041

Mansour-Saatloo, A., Mirzaei, M. A., Mohammadi-Ivatloo, B., Zare, K., 2020. A risk-averse hybrid approach for optimal participation of powerto-hydrogen technology-based multi-energy microgrid in multi-energy markets. Sustainable Cities and Society 63, 102421. https://doi.org/10.1016/j.scs.2020.102421

Mansouri, S. A., Ahmarinejad, A., Nematbakhsh, E., Javadi, M. S., Jordehi, A. R., Catalão, J. P., 2021. Energy management in microgrids including smart homes: A multi-objective approach. Sustainable Cities and Society 69, 102852. https://doi.org/10.1016/j.scs.2021.102852

Marnay, C., Venkataramanan, G., Stadler, M., Siddiqui, A., Firestone, R., Chandran, B., 2008. Optimal technology selection and operation of commercialbuilding microgrids. IEEE Transactions on Power Systems 23 (3), 975-982. https://doi.org/10.1109/TPWRS.2008.922654

Maroufmashat, A., Taqvi, S. T., Miragha, A., Fowler, M., Elkamel, A., 2019. Modeling and optimization of energy hubs: A comprehensive review. Inventions 4 (3), 50. https://doi.org/10.3390/inventions4030050

Martinez Cesena, E. A., Mancarella, P., 2019. Energy systems integration in smart districts: Robust optimisation of multi-energy flows in integrated electricity, heat and gas networks. IEEE Transactions on Smart Grid 10 (1), 1122-1131. https://doi.org/10.1109/TSG.2018.2828146

Mavromatidis, G., Petkov, I., 2021. Mango: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems. Applied Energy 288, 116585. https://doi.org/10.1016/j.apenergy.2021.116585

Mehdi, M., Kim, C., Saad, M., 2020. Robust centralized control for dc islanded microgrid considering communication network delay. IEEE Access 8, 77765-77778. https://doi.org/10.1109/ACCESS.2020.2989777

Mehrabadi, R. A., Moghaddam, M. P., Sheikh-El-Eslami, M. K., 2020. Regulatory-intervented sustainable generation expansion planning in multielectricity markets. Sustainable Cities and Society 52, 101794. https://doi.org/10.1016/j.scs.2019.101794

Menezes Morato, M., da Costa Mendes, P. R., Normey-Rico, J. E., Bordons, C., 2017. Optimal operation of hybrid power systems including renewable sources in the sugar cane industry. IET Renewable Power Generation 11 (8), 1237-1245. https://doi.org/10.1049/iet-rpg.2016.0443

Minutillo, M., Perna, A., Sorce, A., 2019. Combined hydrogen, heat and electricity generation via biogas reforming: Energy and economic assessments. International Journal of Hydrogen Energy 44 (43), 23880-23898. https://doi.org/10.1016/j.ijhydene.2019.07.105

Mirzapour-Kamanaj, A., Majidi, M., Zare, K., Kazemzadeh, R., 2020. Optimal strategic coordination of distribution networks and interconnected energy hubs: A linear multi-follower bi-level optimization model. International Journal of Electrical Power & Energy Systems 119, 105925. https://doi.org/10.1016/j.ijepes.2020.105925

Mohamed, M. A., Abdullah, H. M., El-Meligy, M. A., Sharaf, M., Soliman, A. T., Hajjiah, A., 2021. A novel fuzzy cloud stochastic framework for energy management of renewable microgrids based on maximum deployment of electric vehicles. International Journal of Electrical Power & Energy Systems 129, 106845. https://doi.org/10.1016/j.ijepes.2021.106845

Mohammadi, M., Ghasempour, R., Astaraei, F. R., Ahmadi, E., Aligholian, A., Toopshekan, A., 2018. Optimal planning of renewable energy resource for a residential house considering economic and reliability criteria. International Journal of Electrical Power & Energy Systems 96, 261-273. https://doi.org/10.1016/j.ijepes.2017.10.017

Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Yousefi, H., 2017a. Energy hub: From a model to a concept""A review. Renewable and Sustainable Energy Reviews 80, 1512-1527. https://doi.org/10.1016/j.rser.2017.07.030

Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Yousefi, H., Jalilinasrabady, S., 2017b. Optimal scheduling of energy hubs in the presence of uncertainty""A review. Journal of Energy Management and Technology 1 (1), 1-17. https://doi.org/10.22109/jemt.2017.49432

Mohammed, A., Refaat, S. S., Bayhan, S., Abu-Rub, H., 2019. AC microgrid control and management strategies: Evaluation and review. IEEE Power Electronics Magazine 6 (2), 18-31. https://doi.org/10.1109/MPEL.2019.2910292

Nasiri, N., Yazdankhah, A. S., Mirzaei, M. A., Loni, A., Mohammadi-Ivatloo, B., Zare, K., Marzband, M., 2020. A bi-level market-clearing for coordinated regional-local multi-carrier systems in presence of energy storage technologies. Sustainable Cities and Society 63, 102439. https://doi.org/10.1016/j.scs.2020.102439

Naval, N., Sánchez, R., Yusta, J. M., 2020. A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation. Renewable Energy 151, 57-69. https://doi.org/10.1016/j.renene.2019.10.144

Nosratabadi, S. M., Jahandide, M., Guerrero, J. M., 2021. Robust scenariobased concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of chp nonlinear model with triple operational zones. Sustainable Cities and Society 68, 102795. https://doi.org/10.1016/j.scs.2021.102795

Ombach, J., 2014. A short introduction to stochastic optimization. Schedae Informaticae 23, 9-20. https://doi.org/10.4467/20838476si.14.001.3018

Orehounig, K., Evins, R., Dorer, V., 2015. Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Applied Energy 154, 277-289. https://doi.org/10.1016/j.apenergy.2015.04.114

Pandžic, H., Kuzle, I., Capuder, T., 2013. Virtual power plant mid-term dispatch' optimization. Applied Energy 101, 134-141. https://doi.org/10.1016/j.apenergy.2012.05.039

Parisio, A., Del Vecchio, C., Vaccaro, A., 2012. A robust optimization approach to energy hub management. International Journal of Electrical Power & Energy Systems 42 (1), 98-104. https://doi.org/10.1016/j.ijepes.2012.03.015

Pasetti, M., Rinaldi, S., Manerba, D., Pasetti, M., Rinaldi, S., Manerba, D., 2018. A virtual power plant architecture for the demand-side management of smart prosumers. Applied Sciences 8 (3), 432. https://doi.org/10.3390/app8030432

Pei, W., Ma, X., Deng, W., Chen, X., Sun, H., Li, D., 2019. Industrial multienergy and production management scheme in cyber-physical environments: A case study in a battery manufacturing plant. IET Cyber-Physical Systems: Theory & Applications 4 (1), 13-21. https://doi.org/10.1049/iet-cps.2018.5029

Phurailatpam, C., Rajpurohit, B. S., Wang, L., 2018. Planning and optimization of autonomous DC microgrids for rural and urban applications in India. Renewable and Sustainable Energy Reviews 82, 194-204. https://doi.org/10.1016/j.rser.2017.09.022

Pudjianto, D., Ramsay, C., Strbac, G., 2007. Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation 1 (1), 10-16. https://doi.org/10.1049/iet-rpg:20060023

Ramos-Teodoro, J., 2021. Estrategias de gestión energética en entornos productivos con apoyo de energía solar. Tesis doctoral, Universidad de Almería.

Ramos-Teodoro, J., Gil, J. D., Roca, L., Rodríguez, F., Berenguel, M., 2021. Optimal water management in agro-industrial districts: An energy hub's case study in the southeast of spain. Processes 9 (2), 333. https://doi.org/10.3390/pr9020333

Ramos-Teodoro, J., Rodríguez, F., Berenguel, M., Torres, J. L., 2018. Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example. Applied Energy 229, 537-550. https://doi.org/10.1016/j.apenergy.2018.08.007

Rodríguez-Blanco, T., Sarabia, D., De Prada, C., 2018. Optimización en tiempo real utilizando la metodología de adaptación de modificadores. Revista Iberoamericana de Automática e Informática industrial 15 (2), 133-144. https://doi.org/10.4995/riai.2017.8846

Sadeghi, H., Rashidinejad, M., Moeini-Aghtaie, M., Abdollahi, A., 2019. The energy hub: An extensive survey on the state-of-the-art. Applied Thermal Engineering 161, 114071. https://doi.org/10.1016/j.applthermaleng.2019.114071

Sadeghian, O., Oshnoei, A., Khezri, R., Muyeen, S., 2020. Risk-constrained stochastic optimal allocation of energy storage system in virtual power plants. Journal of Energy Storage 31, 101732. https://doi.org/10.1016/j.est.2020.101732

Sadeghian, O., Shotorbani, A. M., Mohammadi-ivatloo, B., 2019. Generation maintenance scheduling in virtual power plants. IET Generation, Transmission & Distribution 13 (12), 2584-2596. https://doi.org/10.1049/iet-gtd.2018.6751

Sahinidis, N. V., 2019. BARON v. 2019.7.13: Global Optimization of MixedInteger Nonlinear Programs, User's Manual. [Online]. Available: http:// www.minlp.com/downloads/docs/baron%20manual.pdf. Accessed on: Sep. 20, 2020.

Salehpour, M. J., Alishavandi, A. M., Hossain, M. J., Rostami, S. M. H., Wang, J., Yu, X., 2021. A stochastic decentralized model for the privately interactive operation of a multi-carrier energy system. Sustainable Cities and Society 64, 102551. https://doi.org/10.1016/j.scs.2020.102551

Suman, G. K., Guerrero, J. M., Roy, O. P., 2021. Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach. Sustainable Cities and Society 67, 102723. https://doi.org/10.1016/j.scs.2021.102723

Tahir, M. F., Haoyong, C., Mehmood, K., Ali, N., Bhutto, J. A., 2019. Integrated energy system modeling of china for 2020 by incorporating demand response, heat pump and thermal storage. IEEE Access 7, 40095-40108. https://doi.org/10.1109/ACCESS.2019.2905684

Taylor, M., Long, S., Marjanovic, O., Parisio, A., 2021. Model predictive control of smart districts with fifth generation heating and cooling networks. IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2021.3082405

The MathWorks, Inc., 2019. MATLAB R2019a. [Online]. Available: http: //es.mathworks.com/products/matlab/. Accessed on: Sep. 20, 2020.

Torres-Moreno, J., Gimenez-Fernandez, A., Perez-Garcia, M., Rodriguez, F., 2018. Energy management strategy for micro-grids with PV-battery systems and electric vehicles. Energies 11 (3), 522. https://doi.org/10.3390/en11030522

Vahedipour-Dahraie, M., Rashidizade-Kermani, H., Shafie-khah, M., Catalão, J. P., 2020. Risk-averse optimal energy and reserve scheduling for virtual power plants incorporating demand response programs. IEEE Transactions on Smart Grid. DOI: 10.1109/TSG.2020.3026971

van Beuzekom, I., Gibescu, M., Slootweg, J., 2015. A review of multi-energy system planning and optimization tools for sustainable urban development. In: Proceedings of the 2015 IEEE Eindhoven PowerTech. IEEE, pp. 1-7. https://doi.org/10.1109/PTC.2015.7232360

Velarde, P., Valverde, L., Maestre, J., Ocampo-Martinez, C., Bordons, C., 2017. On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid. Journal of Power Sources 343, 161-173. https://doi.org/10.1016/j.jpowsour.2017.01.015

Vergara-Dietrich, J. D., Menezes Morato, M., da Costa Mendes, P. R., Cani, A. A., Normey-Rico, J. E., Bordons, C., 2019. Advanced chance-constrained predictive control for the efficient energy management of renewable power systems. Journal of Process Control 74, 120-132. https://doi.org/10.1016/j.jprocont.2017.11.003

Wang, H., Riaz, S., Mancarella, P., 2020. Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization. Applied Energy 259, 114142. https://doi.org/10.1016/j.apenergy.2019.114142

Wang, J., Hu, Z., Xie, S., 2019. Expansion planning model of multi-energy system with the integration of active distribution network. Applied Energy 253, 113517. https://doi.org/10.1016/j.apenergy.2019.113517

Wang, Y., Zhang, N., Zhuo, Z., Kang, C., Kirschen, D., 2018. Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied Energy 210, 1141-1150. https://doi.org/10.1016/j.apenergy.2017.08.114

Wei, C., Xu, J., Liao, S., Sun, Y., Jiang, Y., Ke, D., Zhang, Z., Wang, J., 2018. A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy. Applied Energy 224, 659-670. https://doi.org/10.1016/j.apenergy.2018.05.032

Wenzel, S., Paulen, R., Stojanovski, G., Krämer, S., Beisheim, B., Engell, S., 2016. Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. Automatisierungstechnik 64 (6), 428-442. https://doi.org/10.1515/auto-2016-0003

Wirtz, M., Hahn, M., Schreiber, T., Müller, D., 2021. Design optimization of multi-energy systems using mixed-integer linear programming: Which model complexity and level of detail is sufficient? Energy Conversion and Management 240, 114249. https://doi.org/10.1016/j.enconman.2021.114249

Wozabal, D., Rameseder, G., 2020. Optimal bidding of a virtual power plant on the Spanish day-ahead and intraday market for electricity. European Journal of Operational Research 280 (2), 639-655.

https://doi.org/10.1016/j.ejor.2019.07.022

Yu, S., Fang, F., Liu, Y., Liu, J., 2019. Uncertainties of virtual power plant: Problems and countermeasures. Applied Energy 239, 454-470. https://doi.org/10.1016/j.apenergy.2019.01.224

Yuan, Z., Wogrin, S., Hesamzadeh, M. R., 2017. Towards the Power Synergy Hub (PSHub): Coordinating the energy dispatch of super grid by modified Benders decomposition. Applied Energy 205, 1419-1434. https://doi.org/10.1016/j.apenergy.2017.09.086

Zamani, A. G., Zakariazadeh, A., Jadid, S., 2016. Day-ahead resource scheduling of a renewable energy based virtual power plant. Applied Energy 169, 324-340. https://doi.org/10.1016/j.apenergy.2016.02.011

Zamanloo, S., Abyaneh, H. A., Nafisi, H., Azizi, M., 2021. Optimal two-level active and reactive energy management of residential appliances in smart homes. Sustainable Cities and Society, 102972. https://doi.org/10.1016/j.scs.2021.102972

Zeng, L., Sun, Y., Zhou, X., Li, B., Qi, B., 2018. Demand dispatch in cyberphysical load aggregation system with multilevel incentives. Journal of Modern Power Systems and Clean Energy 6 (5), 968-978. https://doi.org/10.1007/s40565-018-0451-z

Zhang, G., Jiang, C., Wang, X., 2019. Comprehensive review on structure and operation of virtual power plant in electrical system. IET Generation, Transmission & Distribution 13 (2), 145-156. https://doi.org/10.1049/iet-gtd.2018.5880

Zhang, Y., Zhang, T., Wang, R., Liu, Y., Guo, B., 2015. Optimal operation of a smart residential microgrid based on model predictive control by considering uncertainties and storage impacts. Solar Energy 122, 1052-1065. https://doi.org/10.1016/j.solener.2015.10.027

Zhong, W., Yang, C., Xie, K., Xie, S., Zhang, Y., 2018. ADMM-based distributed auction mechanism for energy hub scheduling in smart buildings. IEEE Access 6, 45635-45645. https://doi.org/10.1109/ACCESS.2018.2865625

Zia, M. F., Benbouzid, M., Elbouchikhi, E., Muyeen, S., Techato, K., Guerrero, J. M., 2020. Microgrid transactive energy: Review, architectures, distributed ledger technologies, and market analysis. IEEE Access 8, 19410-19432. https://doi.org/10.1109/ACCESS.2020.2968402

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem