- -

Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones

Mostrar el registro completo del ítem

Yudho-Montes De Oca, E.; Maya-Rodríguez, MC.; Tolentino-Eslava, R.; Lozano-Hernández, Y. (2022). Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones. Revista Iberoamericana de Automática e Informática industrial. 19(3):265-273. https://doi.org/10.4995/riai.2022.16060

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186924

Ficheros en el ítem

Metadatos del ítem

Título: Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones
Otro titulo: A real-time stable neuro-controller to reduce the energy consumption in a centrifugal pump under disturbances
Autor: Yudho-Montes de Oca, Eduardo Maya-Rodríguez, Mario Cesar Tolentino-Eslava, René Lozano-Hernández, Yair
Fecha difusión:
Resumen:
[EN] In this paper, the application of an on-line tuning method based on neural networks for a PID controller was proposed to regulate the flow in a centrifugal pump. The implementation of a modified back-propagation ...[+]


[ES] En este trabajo se propuso la aplicacion de un método de sintonización en línea basado en redes neuronales para un controlador PID que regula el flujo en una bomba centrífuga. Se llevo a cabo la implementación de un ...[+]
Palabras clave: Neural Networks , Process control , Real-time control , Adaptive control by neural networks , Water supply and distribution systems , Redes Neuronales , Control de procesos , Control en tiempo real , Control adaptable por redes neuronales , Sistemas de suministro y distribucion de agua
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16060
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16060
Tipo: Artículo

References

Aggarwal, C., 2018. Neural Networks and Deep Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-94463-0

Al-Khalifah, M.H., Mcmillan, G., 2012. Control valve versus variable speed drive for flow control.

Boutalis, Y., Theodoridis, D., Kottas, T.L., Christodoulou, M., 2014. System identification and adaptive control. https://doi.org/10.1007/978-3-319-06364-5 [+]
Aggarwal, C., 2018. Neural Networks and Deep Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-94463-0

Al-Khalifah, M.H., Mcmillan, G., 2012. Control valve versus variable speed drive for flow control.

Boutalis, Y., Theodoridis, D., Kottas, T.L., Christodoulou, M., 2014. System identification and adaptive control. https://doi.org/10.1007/978-3-319-06364-5

Chen, J., Huang, T.C., 2004. Applying neural networks to on-line updated pid controllers for nonlinear process control. Journal of Process Control 14, 211 - 230. https://doi.org/10.1016/S0959-1524(03)00039-8

Fujinaka, T., Kishida, Y., Yoshioka, M., Omatu, S., 2000. Stabilization of double inverted pendulum with self-tuning neuro-pid, in: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, pp. 345-348 vol. 4. https://doi.org/10.1109/IJCNN.2000.860795

Haykin, S., 2010. Neural Networks and Learning Machines. volume volume. Third ed., Pearson.

Hu, K.m., Li, Y.z., Guan, X.m., 2012. Research of the pipe flow measurement and control system based on bp neural networks pid, in: Advances in Technology and Management, Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29637-6_4

Lozano-Hernández, Y., Fr'ıas, O., Lozada-Castillo, N., Juarez, A., 2019. Control algorithm for taking off and landing manoeuvres of quadrotors in open navigation environments. International Journal of Control Automation and Systems 17, 2331-2342. https://doi.org/10.1007/s12555-017-0743-5

Marchi, A., Simpson, A., Ertugrul, N., 2012. Assessing variable speed pump efficiency in water distribution systems. Drinking Water Engineering and Science 5, 15-21. https://doi.org/10.5194/dwes-5-15-2012

Miroslav, C., Stefan, K., 2003. Neural networks for real time control systems. IFAC Proceedings Volumes 36, 135 - 142. 2nd IFAC Conference on Control Systems Design, Bratislava, Slovak Republic, 7-10 September 2003. https://doi.org/10.1016/S1474-6670(17)34658-X

Narendra, K.S., Parthasarathy, K., 1991. Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Transactions on Neural Networks 2, 252-262. https://doi.org/10.1109/72.80336

Nault, J., Papa, F., 2015. Lifecycle assessment of a water distribution system pump. Journal of Water Resources Planning and Management 141. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000546

Nourbakhsh, S.A., Jaumotte, B.A., Hirsch, C., Parizi, H., 2010. Turbopumps and pumping systems.

Ogata, K., 2010. Ingeniería de control moderna, Pearson.

Pirabakaran, K., Becerra, V., 2002. Pid autotuning using neural networks and model reference adaptive control. IFAC Proceedings Volumes 35, 451 - 456.15th IFAC World Congress. https://doi.org/10.3182/20020721-6-ES-1901.00728

Ramos-Velasco, L.E., Domínguez-Ramírez, O.A., Parra-Vega, V., 2016. Wavenet fuzzy pid controller for nonlinear mimo systems: Experimental validation on a high-end haptic robotic interface. Applied Soft Computing 40, 199-205. doi:10.1016/j.asoc.2015.11.014. https://doi.org/10.1016/j.asoc.2015.11.014

Sarbu, I., Valea, E., 2015. Energy savings potential for pumping water in districtheating stations. Sustainability 7, 1-15. https://doi.org/10.3390/su7055705

Sedighizadeh, M., Rezazadeh, A., 2008. Adaptive pid control of wind energy conversion systems using rasp1 mother wavelet basis function networks. International Journal of Electrical and Computer Engineering , 62-66. URL: https://publications.waset.org/vol/13, doi:doi.org/10.5281/zenodo.1077309.

Singh, A., Kaur, A., 2014. Tuning techniques of pid controller: A review, in: National Conference on Advances in Engineering and Technology of International Journal of Engineering Research and Applications.

Waide, P., Brunner, C., 2011. Energy-efficiency policy opportunities for electric motor-driven systems.

Xi-fan, Y., 2009. Application of self-tuning of pid control based on bp neural networks in the manufacturing process. Modular Machine Tool and Automatic Manufacturing Technique .

Yang, Y., Wu, Q., 2016. A neural network pid control for ph neutralization process, in: 2016 35th Chinese Control Conference (CCC), pp. 3480-3483. https://doi.org/10.1109/ChiCC.2016.7553893

Yu, W., Li, X., 2003. Discrete-time neuro identification without robust modification. IEE Proceedings - Control Theory and Applications 150, 311-316. https://doi.org/10.1049/ip-cta:20030204

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem