- -

Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yudho-Montes de Oca, Eduardo es_ES
dc.contributor.author Maya-Rodríguez, Mario Cesar es_ES
dc.contributor.author Tolentino-Eslava, René es_ES
dc.contributor.author Lozano-Hernández, Yair es_ES
dc.date.accessioned 2022-10-04T12:24:16Z
dc.date.available 2022-10-04T12:24:16Z
dc.date.issued 2022-06-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/186924
dc.description.abstract [EN] In this paper, the application of an on-line tuning method based on neural networks for a PID controller was proposed to regulate the flow in a centrifugal pump. The implementation of a modified back-propagation algorithm stable in the sense of input-to-state stability was carried out to update the weights of a neural network. The energy consumed by the pump to maintain a certain flow in the pipeline of an experimental station as an indicator to assess the efficiency of the controller was chosen. Different experimental tests to show the performance of the proposed controller under different conditions were carried out such as non-disturbance, constant disturbances and time-dependent disturbances. A proportional valve was implemented to generate the disturbances in the system. The controller was compared with a classical PID controller and an on-line tuning method based on neural networks for a PID controller without back-propagation modification. The results showed that the on-line tuning method based on neural networks with a stable learning algorithm produced a lower energy consumption in the centrifugal pump. es_ES
dc.description.abstract [ES] En este trabajo se propuso la aplicacion de un método de sintonización en línea basado en redes neuronales para un controlador PID que regula el flujo en una bomba centrífuga. Se llevo a cabo la implementación de un algoritmo de retropropagación modificado estable en el sentido de estabilidad de entrada a estado para actualizar los pesos de una red neuronal. Se empleó la energía consumida por la bomba para mantener un determinado flujo en la tuber´ía de una a estación experimental como indicador para evaluar la eficiencia del controlador. Se llevaron a cabo diferentes pruebas experimentales para mostrar el rendimiento del controlador propuesto en diferentes condiciones, tales como ausencia de perturbaciones, perturbaciones constantes y perturbaciones dependientes del tiempo. Se implementó una v´álvula proporcional para generar las perturbaciones en el sistema. El controlador se comparó con un controlador PID clasico y un método de ajuste en línea basado en redes neuronales para un controlador PID con algoritmo de retropropagacion sin modificación. Los resultados mostraron que el método de ajuste en línea basado en redes neuronales con un algoritmo de aprendizaje estable produjo un menor consumo de energía en la bomba centrífuga de hasta 4 Watt-hora de acuerdo con los resultados reportados. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Neural Networks es_ES
dc.subject Process control es_ES
dc.subject Real-time control es_ES
dc.subject Adaptive control by neural networks es_ES
dc.subject Water supply and distribution systems es_ES
dc.subject Redes Neuronales es_ES
dc.subject Control de procesos es_ES
dc.subject Control en tiempo real es_ES
dc.subject Control adaptable por redes neuronales es_ES
dc.subject Sistemas de suministro y distribucion de agua es_ES
dc.title Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones es_ES
dc.title.alternative A real-time stable neuro-controller to reduce the energy consumption in a centrifugal pump under disturbances es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16060
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Yudho-Montes De Oca, E.; Maya-Rodríguez, MC.; Tolentino-Eslava, R.; Lozano-Hernández, Y. (2022). Un neuro-controlador estable en tiempo real para reducir el consumo de energía en una bomba centrífuga ante perturbaciones. Revista Iberoamericana de Automática e Informática industrial. 19(3):265-273. https://doi.org/10.4995/riai.2022.16060 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16060 es_ES
dc.description.upvformatpinicio 265 es_ES
dc.description.upvformatpfin 273 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16060 es_ES
dc.description.references Aggarwal, C., 2018. Neural Networks and Deep Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-94463-0 es_ES
dc.description.references Al-Khalifah, M.H., Mcmillan, G., 2012. Control valve versus variable speed drive for flow control. es_ES
dc.description.references Boutalis, Y., Theodoridis, D., Kottas, T.L., Christodoulou, M., 2014. System identification and adaptive control. https://doi.org/10.1007/978-3-319-06364-5 es_ES
dc.description.references Chen, J., Huang, T.C., 2004. Applying neural networks to on-line updated pid controllers for nonlinear process control. Journal of Process Control 14, 211 - 230. https://doi.org/10.1016/S0959-1524(03)00039-8 es_ES
dc.description.references Fujinaka, T., Kishida, Y., Yoshioka, M., Omatu, S., 2000. Stabilization of double inverted pendulum with self-tuning neuro-pid, in: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, pp. 345-348 vol. 4. https://doi.org/10.1109/IJCNN.2000.860795 es_ES
dc.description.references Haykin, S., 2010. Neural Networks and Learning Machines. volume volume. Third ed., Pearson. es_ES
dc.description.references Hu, K.m., Li, Y.z., Guan, X.m., 2012. Research of the pipe flow measurement and control system based on bp neural networks pid, in: Advances in Technology and Management, Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29637-6_4 es_ES
dc.description.references Lozano-Hernández, Y., Fr'ıas, O., Lozada-Castillo, N., Juarez, A., 2019. Control algorithm for taking off and landing manoeuvres of quadrotors in open navigation environments. International Journal of Control Automation and Systems 17, 2331-2342. https://doi.org/10.1007/s12555-017-0743-5 es_ES
dc.description.references Marchi, A., Simpson, A., Ertugrul, N., 2012. Assessing variable speed pump efficiency in water distribution systems. Drinking Water Engineering and Science 5, 15-21. https://doi.org/10.5194/dwes-5-15-2012 es_ES
dc.description.references Miroslav, C., Stefan, K., 2003. Neural networks for real time control systems. IFAC Proceedings Volumes 36, 135 - 142. 2nd IFAC Conference on Control Systems Design, Bratislava, Slovak Republic, 7-10 September 2003. https://doi.org/10.1016/S1474-6670(17)34658-X es_ES
dc.description.references Narendra, K.S., Parthasarathy, K., 1991. Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Transactions on Neural Networks 2, 252-262. https://doi.org/10.1109/72.80336 es_ES
dc.description.references Nault, J., Papa, F., 2015. Lifecycle assessment of a water distribution system pump. Journal of Water Resources Planning and Management 141. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000546 es_ES
dc.description.references Nourbakhsh, S.A., Jaumotte, B.A., Hirsch, C., Parizi, H., 2010. Turbopumps and pumping systems. es_ES
dc.description.references Ogata, K., 2010. Ingeniería de control moderna, Pearson. es_ES
dc.description.references Pirabakaran, K., Becerra, V., 2002. Pid autotuning using neural networks and model reference adaptive control. IFAC Proceedings Volumes 35, 451 - 456.15th IFAC World Congress. https://doi.org/10.3182/20020721-6-ES-1901.00728 es_ES
dc.description.references Ramos-Velasco, L.E., Domínguez-Ramírez, O.A., Parra-Vega, V., 2016. Wavenet fuzzy pid controller for nonlinear mimo systems: Experimental validation on a high-end haptic robotic interface. Applied Soft Computing 40, 199-205. doi:10.1016/j.asoc.2015.11.014. https://doi.org/10.1016/j.asoc.2015.11.014 es_ES
dc.description.references Sarbu, I., Valea, E., 2015. Energy savings potential for pumping water in districtheating stations. Sustainability 7, 1-15. https://doi.org/10.3390/su7055705 es_ES
dc.description.references Sedighizadeh, M., Rezazadeh, A., 2008. Adaptive pid control of wind energy conversion systems using rasp1 mother wavelet basis function networks. International Journal of Electrical and Computer Engineering , 62-66. URL: https://publications.waset.org/vol/13, doi:doi.org/10.5281/zenodo.1077309. es_ES
dc.description.references Singh, A., Kaur, A., 2014. Tuning techniques of pid controller: A review, in: National Conference on Advances in Engineering and Technology of International Journal of Engineering Research and Applications. es_ES
dc.description.references Waide, P., Brunner, C., 2011. Energy-efficiency policy opportunities for electric motor-driven systems. es_ES
dc.description.references Xi-fan, Y., 2009. Application of self-tuning of pid control based on bp neural networks in the manufacturing process. Modular Machine Tool and Automatic Manufacturing Technique . es_ES
dc.description.references Yang, Y., Wu, Q., 2016. A neural network pid control for ph neutralization process, in: 2016 35th Chinese Control Conference (CCC), pp. 3480-3483. https://doi.org/10.1109/ChiCC.2016.7553893 es_ES
dc.description.references Yu, W., Li, X., 2003. Discrete-time neuro identification without robust modification. IEE Proceedings - Control Theory and Applications 150, 311-316. https://doi.org/10.1049/ip-cta:20030204 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem