- -

Sistema híbrido inteligente para el control y operación de un convertidor elevador en modo Soft-Switching

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sistema híbrido inteligente para el control y operación de un convertidor elevador en modo Soft-Switching

Mostrar el registro completo del ítem

Fernandez-Serantes, LA.; Casteleiro-Roca, JL.; Calvo-Rolle, JL. (2022). Sistema híbrido inteligente para el control y operación de un convertidor elevador en modo Soft-Switching. Revista Iberoamericana de Automática e Informática industrial. 19(4):356-368. https://doi.org/10.4995/riai.2022.16656

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187020

Ficheros en el ítem

Metadatos del ítem

Título: Sistema híbrido inteligente para el control y operación de un convertidor elevador en modo Soft-Switching
Otro titulo: Hybrid intelligent system for detection of Soft-Switching mode and control of a boost converter
Autor: Fernandez-Serantes, Luis Alfonso Casteleiro-Roca, Jose Luis Calvo-Rolle, Jose Luis
Fecha difusión:
Resumen:
[EN] In this work, an intelligent control based on artificial intelligence is presented. This novel control strategy aims to ensure thata half-bridge boost converter operates in soft-switching mode. As first step, an ...[+]


[ES] En este trabajo de investigación se presenta una estrategia de control inteligente implementada en un convertidor elevador con topología de medio puente. El sistema se usa para asegurar que el convertidor funcione en ...[+]
Palabras clave: Classification , Half-bridge buck , Power electronics , Soft-switching , Hard-switching , Clasificación , Convertidor elevador , Electrónica de potencia , Conmutación suave , Conmutación dura
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16656
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16656
Código del Proyecto:
info:eu-repo/grantAgreement/Xunta de Galicia//ED431G2019%2F01
Agradecimientos:
El CITIC, como Centro de Investigación del Sistema Universitario de Galicia, esta financiado por la Conselleria de Educación, Universidade e Formación Profesional de la Xunta de Galicia a través del Fondo Europeo de ...[+]
Tipo: Artículo

References

Agrawal, U., Soria, D., Wagner, C., Garibaldi, J., Ellis, I.O., Bartlett, J.M., Cameron, D., Rakha, E.A., Green, A.R., 2019. Combining clustering and classification ensembles: A novel pipeline to identify breast cancer profiles. Artificial Intelligence in Medicine 97, 27 - 37. https://doi.org/10.1016/j.artmed.2019.05.002

Al-bayati, A.M.S., Alharbi, S.S., Alharbi, S.S., Matin, M., 2017. A comparative design and performance study of a non-isolated dc-dc buck converter based on si-mosfet/si-diode, sic-jfet/sic-schottky diode, and gan-transistor/sicschottky diode power devices, in: 2017 North American Power Symposium (NAPS), pp. 1-6. doi:10.1109/NAPS.2017.8107192. https://doi.org/10.1109/NAPS.2017.8107192

Beiranvand, R., Rashidian, B., Zolghadri, M.R., Alavi, S.M.H., 2011. Using llc resonant converter for designing wide-range voltage source. IEEE Transactions on Industrial Electronics 58, 1746-1756. doi:10.1109/TIE.2010.2052537. https://doi.org/10.1109/TIE.2010.2052537 [+]
Agrawal, U., Soria, D., Wagner, C., Garibaldi, J., Ellis, I.O., Bartlett, J.M., Cameron, D., Rakha, E.A., Green, A.R., 2019. Combining clustering and classification ensembles: A novel pipeline to identify breast cancer profiles. Artificial Intelligence in Medicine 97, 27 - 37. https://doi.org/10.1016/j.artmed.2019.05.002

Al-bayati, A.M.S., Alharbi, S.S., Alharbi, S.S., Matin, M., 2017. A comparative design and performance study of a non-isolated dc-dc buck converter based on si-mosfet/si-diode, sic-jfet/sic-schottky diode, and gan-transistor/sicschottky diode power devices, in: 2017 North American Power Symposium (NAPS), pp. 1-6. doi:10.1109/NAPS.2017.8107192. https://doi.org/10.1109/NAPS.2017.8107192

Beiranvand, R., Rashidian, B., Zolghadri, M.R., Alavi, S.M.H., 2011. Using llc resonant converter for designing wide-range voltage source. IEEE Transactions on Industrial Electronics 58, 1746-1756. doi:10.1109/TIE.2010.2052537. https://doi.org/10.1109/TIE.2010.2052537

Düntsch, I., Gediga, G., 2020. Indices for rough set approximation and the application to confusion matrices. International Journal of Approximate Reasoning 118, 155 - 172. doi:https://doi.org/10.1016/j.ijar.2019.12.008 https://doi.org/10.1016/j.ijar.2019.12.008

Eraydin, H., Bakan, A.F., 2020. E ciency comparison of asynchronous and synchronous buck converter, in: 2020 6th International Conference on Electric Power and Energy Conversion Systems (EPECS), pp. 30-33. https://doi.org/10.1109/EPECS48981.2020.9304966

Fernandez-Serantes, L.A., Berger, H., Stocksreiter, W., Weis, G., 2016. Ultrahigh frequent switching with gan-hemts using the coss-capacitances as nondissipative snubbers, in: PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-8.

GaN-Systems, 2018. GS66516T Top-side cooled 650 V E-mode GaN transistor. GaN Systems Inc. Rev 180422.

Gueguen, P., 2015. How power electronics will reshape to meet the 21st century challenges?, in: 2015 IEEE 27th International Symposium on Power Semiconductor Devices IC's (ISPSD), pp. 17-20. https://doi.org/10.1109/ISPSD.2015.7123378

Guillod, T., Papamanolis, P., W. Kolar, J., 2020. Artificial neural network (ann) based fast and accurate inductor modeling and design. IEEE Open Journal of Power Electronics 1, 284-299. doi:10.1109/OJPEL.2020.3012777. https://doi.org/10.1109/OJPEL.2020.3012777

Huang, G.C., Liang, T.J., Chen, K.H., 2012. Losses analysis and low standby losses quasi-resonant flyback converter design, in: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 217-220. https://doi.org/10.1109/ISCAS.2012.6271718

Kaski, S., Sinkkonen, J., Klami, A., 2005. Discriminative clustering. Neurocomputing 69, 18-41. https://doi.org/10.1016/j.neucom.2005.02.012

Li, Y., Ruan, X., Zhang, L., Dai, J., Jin, Q., 2019. Optimized parameters design and adaptive duty-cycle adjustment for class e dc-dc converter with on-off control. IEEE Transactions on Power Electronics 34, 7728-7744. https://doi.org/10.1109/TPEL.2018.2881170

Liu, M.Z., Shao, Y.H., Li, C.N., Chen, W.J., 2020. Smooth pinball loss nonparallel support vector machine for robust classification. Applied Soft Computing , 106840doi:https://doi.org/10.1016/j.asoc.2020.106840. https://doi.org/10.1016/j.asoc.2020.106840

Marchesan, G., Muraro, M., Cardoso, G., Mariotto, L., da Silva, C., 2016. Method for distributed generation anti-islanding protection based on singular value decomposition and linear discrimination analysis. Electric Power Systems Research 130, 124 - 131. https://doi.org/10.1016/j.epsr.2015.08.025

Mohan, N., Undeland, T.M., Robbins, W.P., 2003. Power electronics: converters, applications, and design. John wiley & sons.

Neumayr, D., Bortis, D., Kolar, J.W., 2020. The essence of the little box challenge-part a: Key design challenges solutions. CPSS Transactions on Power Electronics and Applications 5, 158-179. https://doi.org/10.24295/CPSSTPEA.2020.00014

Qin, A.K., Suganthan, P.N., 2005. Enhanced neural gas network for prototypebased clustering. Pattern recognition 38, 1275-1288. https://doi.org/10.1016/j.patcog.2004.12.007

Tahiliani, S., Sreeni, S., Moorthy, C.B., 2019. A multilayer perceptron approach to track maximum power in wind power generation systems, in: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp. 587-591. doi:10.1109/TENCON.2019.8929414. https://doi.org/10.1109/TENCON.2019.8929414

Tao Liu, Wenjun Zhang, Zhiping Yu, 2005. Modeling of spiral inductors using artificial neural network, in: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., pp. 2353-2358 vol. 4. doi:10.1109/IJCNN.2005.1556269.

Thapngam, T., Yu, S., Zhou, W., 2012. Ddos discrimination by linear discriminant analysis (lda), in: 2012 International Conference on Computing, Networking and Communications (ICNC), IEEE. pp. 532-536. https://doi.org/10.1109/ICCNC.2012.6167480

Tulbure, A., Kadar, M., 2017. Power electronics methods to improve energy effciency in the public transportation system, in: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1277-1281. doi:10.1109/ICE.2017.8280027. https://doi.org/10.1109/ICE.2017.8280027

Uysal, I., G¨uvenir, H.A., 1999. An overview of regression techniques for knowledge discovery. The Knowledge Engineering Review 14, 319-340. https://doi.org/10.1017/S026988899900404X

Wang, Z., Lou, Z., Chen, H., 2007. A novel dual-llc resonant soft switching converter for super high frequency induction heating power supplies, in: 2007 IEEE Power Electronics Specialists Conference, pp. 2561-2566. https://doi.org/10.1109/PESC.2007.4342418

Wei, C., Zhang, Z., Qiao, W., Qu, L., 2015. Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems. IEEE Transactions on Industrial Electronics 62, 6360-6370. https://doi.org/10.1109/TIE.2015.2420792

Whitaker, B., Barkley, A., Cole, Z., Passmore, B., McNutt, T., Lostetter, A.B., 2013. High-frequency ac-dc conversion with a silicon carbide power module to achieve high-effciency and greatly improved power density, in: 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1-5. doi:10.1109/PEDG.2013.6785611. https://doi.org/10.1109/PEDG.2013.6785611

Zhan, X., Wang, W., Chung, H., 2018. A neural-network-based color control method for multi-color led systems. IEEE Transactions on Power Electronics 34, 7900-7913. https://doi.org/10.1109/TPEL.2018.2880876

Zhao, S., Blaabjerg, F., Wang, H., 2021. An overview of artificial intelligence applications for power electronics. IEEE Transactions on Power Electronics 36, 4633-4658. doi:10.1109/TPEL.2020.3024914. https://doi.org/10.1109/TPEL.2020.3024914

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem