- -

Aportaciones al control de vehículos aéreos no tripulados en México

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aportaciones al control de vehículos aéreos no tripulados en México

Mostrar el registro completo del ítem

Rodríguez-Cortés, H. (2022). Aportaciones al control de vehículos aéreos no tripulados en México. Revista Iberoamericana de Automática e Informática industrial. 19(4):430-441. https://doi.org/10.4995/riai.2022.16870

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187038

Ficheros en el ítem

Metadatos del ítem

Título: Aportaciones al control de vehículos aéreos no tripulados en México
Otro titulo: Mexican researchers contributions to unmanned aerial vehicles control
Autor: Rodríguez-Cortés, Hugo
Fecha difusión:
Resumen:
[EN] The massification of microelectromechanical systems made possible the use of inertial and visual sensors in small and lowcost unmanned aerial vehicles. This fact, reinforced with tools from automatic control theory ...[+]


[ES] El avance en el desarrollo de sistemas microelectromecánicos (MEMS) hizo posible el uso de sensores inerciales y visuales en vehículos aéreos no tripulados de pequeñas dimensiones y bajo costo. Este hecho potenciado ...[+]
Palabras clave: Unmanned Aerial Vehicles , Energy based control , Real Time , Vehículos aéreos no tripulados , Control basado en Energía , Tiempo Real
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16870
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16870
Tipo: Artículo

References

International Micro Air Vehicles, Conferences and Competitions, 2016. Results. Last accessed December 13, 2021. URL: http://www.imavs.org/2016/documents/Result.pdf

Bhat, S. P., Bernstein, D. S., 2000. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Systems & Control Letters 39 (1), 63-70. https://doi.org/10.1016/S0167-6911(99)00090-0

Bloch, A. M., Chang, D. E., Leonard, N. E., Marsden, J. E., 2001. Controlled lagrangians and the stabilization of mechanical systems. ii. potential shaping. Automatic Control, IEEE Transactions on 46 (10), 1556-1571. https://doi.org/10.1109/9.956051 [+]
International Micro Air Vehicles, Conferences and Competitions, 2016. Results. Last accessed December 13, 2021. URL: http://www.imavs.org/2016/documents/Result.pdf

Bhat, S. P., Bernstein, D. S., 2000. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Systems & Control Letters 39 (1), 63-70. https://doi.org/10.1016/S0167-6911(99)00090-0

Bloch, A. M., Chang, D. E., Leonard, N. E., Marsden, J. E., 2001. Controlled lagrangians and the stabilization of mechanical systems. ii. potential shaping. Automatic Control, IEEE Transactions on 46 (10), 1556-1571. https://doi.org/10.1109/9.956051

Bloch, A. M., Leonard, N. E., Marsden, J. E., 2000. Controlled lagrangians and the stabilization of mechanical systems. i. the first matching theorem. Automatic Control, IEEE Transactions on 45 (12), 2253-2270. https://doi.org/10.1109/9.895562

Bouabdallah, S., Siegwart, R., 2007. Full control of a quadrotor. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 153-158. https://doi.org/10.1109/IROS.2007.4399042

Brezoescu, A., Espinoza, T., Castillo, P., Lozano, R., 2013. Adaptive trajectory following for a fixed-wing uav in presence of crosswind. Journal of Intelligent & Robotic Systems 69 (1), 257-271. https://doi.org/10.1007/s10846-012-9756-8

Brigido-Gonzalez, J., RodrIguez-Cortes, H., 2016. Experimental validation of an adaptive total energy control system strategy for the longitudinal dynamics of a fixed-wing aircraft. Journal of Aerospace Engineering 29 (1), 04015024. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000512

Bristeau, P.-J., Callou, F., Vissi A¨re, D., Petit, N., 2011. The navigation and control technology inside the ar.drone micro uav. IFAC Proceedings Volumes 44 (1), 1477-1484, 18th IFAC World Congress. URL: https://www.sciencedirect.com/science/article/pii/S1474667016438188 https://doi.org/10.3182/20110828-6-IT-1002.02327

Bruce, K. R., Kelly, J., Person Jr, L., 1986. Nasa b737 flight test results of the total energy control system. In: AIAA, Guidance, Navigation and Control Conference. p. 10p. https://doi.org/10.2514/6.1986-2143

Carrillo, L. G., Rondon, E., Sanchez, A., Dzul, A., Lozano, R., 2011. Stabilization and trajectory tracking of a quad-rotor using vision. Journal of Intelligent & Robotic Systems 61 (1), 103-118. https://doi.org/10.1007/s10846-010-9472-1

Carrillo, L. R. G., Dzul, A., Lozano, R., 2012. Hovering quad-rotor control: A comparison of nonlinear controllers using visual feedback. IEEE Transactions on Aerospace and Electronic Systems 48 (4), 3159-3170. https://doi.org/10.1109/TAES.2012.6324687

Castillo, P., Lozano, R., Dzul, A. E., 2005. Modelling and control of mini-flying machines. Springer Science & Business Media.

Castro, E., 2021. Hydra technologies invierte 90mdp en nuevas tecnologias para el desarrollo de aeronaves no tripuladas. Last accessed December 13, 2021. URL: https://mexicoindustry.com/noticia/hydra-technologies-invierte-90mdp

Chaturvedi, N. A., Sanyal, A. K., McClamroch, N. H., 2011. Rigid-body attitude control. IEEE Control Systems 31 (3), 30-51. https://doi.org/10.1109/MCS.2011.940459

Corona-Sanchez, J. J., Rodriguez-Cortes, H., 2013. Trajectory tracking control for a rotary wing vehicle powered by four rotors. Journal of Intelligent & Robotic Systems 70 (1), 39-50. https://doi.org/10.1007/s10846-012-9760-z

Dorf, R., Bishop, R., 2011. Modern Control Systems, 12th Edition. Pearson Prentice Hall.

Draganfly, I., 2021. About us. Last accessed November 30, 2021. URL: https://draganfly.com/about-us/

Escobar-Ruiz, A. G., Lopez-Botello, O., Reyes-Osorio, L., Zambrano-Robledo, P., Amezquita-Brooks, L., Garcia-Salazar, O., 2019. Conceptual design of an unmanned fixed-wing aerial vehicle based on alternative energy. International Journal of Aerospace Engineering 2019. https://doi.org/10.1155/2019/8104927

Espinoza, T., Dzul, A., Lozano, R., Parada, P., 2014. Backstepping-sliding mode controllers applied to a fixed-wing uav. Journal of Intelligent & Robotic Systems 73 (1), 67-79. https://doi.org/10.1007/s10846-013-9955-y

Estrada, S. A., Liceaga-Castro, E., Rodriguez-Cortes, H., 2006. Nonlinear motion control of a rotary wing vehicle powered by four rotors. In: 2006 3rd International Conference on Electrical and Electronics Engineering. pp. 1-6. https://doi.org/10.1109/ICEEE.2006.251910

Fecko, M., 2006. Differential Geometry and Lie Groups for Physicists. Cambridge University Press. DOI: 10.1017/CBO9780511755590 https://doi.org/10.1017/CBO9780511755590

Gonzalez, I., Salazar, S., Lozano, R., 2014. Chattering-free sliding mode altitude control for a quad-rotor aircraft: Real-time application. Journal of Intelligent & Robotic Systems 73 (1), 137-155. https://doi.org/10.1007/s10846-013-9913-8

Guadarrama-Olvera, J. R., Corona-Sanchez, J. J., Rodriguez-Cortes, H., 2014. Hard real-time implementation of a nonlinear controller for the quadrotor helicopter. Journal of Intelligent & Robotic Systems 73 (1), 81-97. https://doi.org/10.1007/s10846-013-9962-z

Guerrero-Castellanos, J., Marchand, N., Hably, A., Lesecq, S., Delamare, J., 2011. Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter. Control Engineering Practice 19 (8), 790-797. URL: https://www.sciencedirect.com/science/article/pii/S0967066111000700 https://doi.org/10.1016/j.conengprac.2011.04.004

Guerrero-Castellanos, J.-F., Tellez-Guzman, J. J., Durand, S., Marchand, N., Alvarez-Munoz, J., Gonzalez-Diaz, V. R., 2014. Attitude stabilization of a quadrotor by means of event-triggered nonlinear control. Journal of Intelligent & Robotic Systems 73 (1), 123-135. https://doi.org/10.1007/s10846-013-9890-y

Guevara, I., 2015. Los "drones" de mexico: quien los utiliza y por que. Last accessed December 13, 2021. URL: https://www.animalpolitico.com/2015/07/los-drones-de-mexico-quien-los-utiliza-y-por-que/

Gutierres-Torres, A., Paz, A. M.-D., 2008. Diseno conceptual, aerodinámico y construccion con materiales compuestos de un aeromodelo de carga con bases del concurso sae aero design 2008. Ph.D. thesis, Escuela Superior de Ingenier'ıa Mecanica y Electrica, Unidad Ticoman, Instituto Politecnico Nacional.

Khalil, H., 2002. Nonlinear Systems. Pearson Education. Prentice Hall. URL: https://books.google.com.mx/books?id=t_d1QgAACAAJ

Koditschek, D. E., February 1989. The application of total energy as a lyapunov function for mechanical control systems. https://doi.org/10.1090/conm/097/1021035

Lambregts, A., 1983a. Functional integration of vertical flight path and speed control using energy principles. In: Proc. 1st Annu. NASA Aircraft Controls Workshop. pp. 389-409. https://doi.org/10.2514/6.1983-2239

Lambregts, A., 1983b. Integrated system design for flight and propulsion control using total energy principles. In: American Institute of Aeronautics and Astronautics, Aircraft Design, Systems and Technology Meeting, Fort Worth, TX. Vol. 17. https://doi.org/10.2514/6.1983-2561

Lambregts, A., 1983c. Vertical flight path and speed control autopilot design using total energy principles. AIAA paper no. 83-2239. https://doi.org/10.2514/6.1983-2239

Lee, T., Leoky, M., McClamroch, N. H., 2010. Geometric tracking control of a quadrotor uav on se (3). In: Decision and Control (CDC), 2010 49th IEEE Conference on. IEEE, pp. 5420-5425. https://doi.org/10.1109/CDC.2010.5717652

Lopez Luna, A., Cruz Vega, I., Martinez-Carranza, J., 2020. Vertical surface contact with a micro air vehicle. International Journal of Micro Air Vehicles 12, 1756829320938745. https://doi.org/10.1177/1756829320938745

Lozano, R., Castillo, P., Dzul, A., 2004a. Global stabilization of the pvtol: Realtime application to a mini-aircraft. International Journal of Control 77 (8), 735-740. URL: https://doi.org/10.1080/00207170410001713033 https://doi.org/10.1080/00207170410001713033

Lozano, R., Castillo, P., Garcia, P., Dzul, A., 2004b. Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica 40 (4), 603-612. URL: https://www.sciencedirect.com/science/article/pii/S0005109803003078 https://doi.org/10.1016/j.automatica.2003.10.007

Malo Tamayo, A. J., Peredo Ortiz, D. R., Rivera Ugalde, A. E., 2020. Partialstate feedback control and trajectory specification for a propeller-driven fixed-wing aircraft. In: 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). pp. 1-6. https://doi.org/10.1109/CCE50788.2020.9299141

Marsden, J. E., Ratiu, T. S., 1999. Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Vol. 17. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-21792-5

Moon, H., Martinez-Carranza, J., Cieslewski, T., Faessler, M., Falanga, D., Simovic, A., Scaramuzza, D., Li, S., Ozo, M., De Wagter, C., et al., 2019. Challenges and implemented technologies used in autonomous drone racing. Intelligent Service Robotics 12 (2), 137-148. https://doi.org/10.1007/s11370-018-00271-6

Muñoz, F., Bonilla, M., Gonzalez-Hernandez, I., Salazar, S., Lozano, R., 2015. Super twisting vs modified super twisting algorithm for altitude control of an unmanned aircraft system. In: 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). pp. 1-6. https://doi.org/10.1109/ICEEE.2015.7357989

Organization, I. C. A., 2017. Remotely piloted aircraft systems (rpas) concept of operations (conops). Last accessed December 13, 2021. URL: https://www.icao.int/safety/UA/Documents/ICAO%20RPAS%20Concept%20of%20Operations.pdf

Ortega, R., Loria, A., Nicklasson, P. J., Sira-Ramirez, H., 1998. Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications. Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-3603-3

Ortega, R., Van Der Schaft, A., Maschke, B., Escobar, G., 2002. Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems. Automatica 38 (4), 585-596. https://doi.org/10.1016/S0005-1098(01)00278-3

Polhemus, I. i. M., 2002. Fastrack 3space polhemus user's manual.

Rejon, V., Aranda-Bricaire, E., 2006. Discrete-time stabilization of a pvtol without roll angle and velocities measurement. In: Proceedings of the 45th IEEE Conference on Decision and Control. pp. 1521-1526. https://doi.org/10.1109/CDC.2006.376916

Rejon, V., Aranda-Bricaire, E., 2007. Discrete-time stabilization of a remotely controlled flying robot in real-time without velocities measurement. In: IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society. pp. 756-761. https://doi.org/10.1109/IECON.2007.4460335

Rejon, V., Aranda-Bricaire, E., 2008. Discrete-time dynamic feedback linearization of a vtol using observed states. IFAC Proceedings Volumes 41 (2), 1753-1759, 17th IFAC World Congress. URL: https://www.sciencedirect.com/science/article/pii/S1474667016392059

https://doi.org/10.3182/20080706-5-KR-1001.00300

Rodriguez-Cortes, H., 2019. A swinging up controller for the furuta pendulum based on the total energy control system approach. Kybernetika 55 (2), 402-421. https://doi.org/10.14736/kyb-2019-2-0402

Rodriguez-Cortes, H., Arias-Montano, A., 2012. Robust geometric sizing of a small flying wing planform based on evolutionary algorithms. The Aeronautical Journal 116 (1176), 175-188. https://doi.org/10.1017/S0001924000006680

Rojas-Perez, L. O., Martinez-Carranza, J., 2021. Towards autonomous drone racing without gpu using an oak-d smart camera. Sensors 21 (22), 7436. https://doi.org/10.3390/s21227436

Rojo-Rodriguez, E. G., Garcia, O., Ollervides, E., Zambrano-Robledo, P., Espinoza-Quesada, E., 2019. Robust consensus-based formation flight for multiple quadrotors. Journal of Intelligent & Robotic Systems 93 (1-2), 213-226. https://doi.org/10.1007/s10846-018-0843-3

Romero, H., Salazar, S., Escareno, J., Lozano, R., 2010. Estabilizacion de un mini helicoptero de cuatro rotores basada en flujo optico y sensores inerciales. Revista Iberoamericana de Automatica e Inform ' atica Industrial RIAI 7 (2), 49-56. URL: https://www.sciencedirect.com/science/article/pii/S169779121070025X https://doi.org/10.1016/S1697-7912(10)70025-X

Rosaldo-Serrano, M. A., Santiaguillo-Salinas, J., Aranda-Bricaire, E., 2019. Observer-based time-varying backstepping control for a quadrotor multiagent system. Journal of Intelligent & Robotic Systems 93 (1-2), 135-150. https://doi.org/10.1007/s10846-018-0867-8

Sanchez, L. A., Santos, O., Romero, H., Salazar, S., Lozano, R., 2012. Nonlinear and optimal real-time control of a rotary-wing uav. In: 2012 American Control Conference (ACC). pp. 3857-3862. https://doi.org/10.1109/ACC.2012.6315498

Sira-Ramirez, H., Castro-Linares, R., Liceaga-Castro, E., 1999. Regulation of the longitudinal dynamics of an helicopter: a liouvillian systems approach. In: Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251). Vol. 4. pp. 2752-2756 vol.4. https://doi.org/10.1109/ACC.1999.786571

Slotine, J.-J., Dec 1988. Putting physics in control-the example of robotics. Control Systems Magazine, IEEE 8 (6), 12-18. https://doi.org/10.1109/37.9164

The Free, D., 2021. Unmanned aerial vehicles. Last accessed Novermber 30, 2021. URL: https://www.thefreedictionary.com/Unmanned+Aerial+Vehicle

Vasquez-Beltran, M., Rodriguez-Cortes, H., 2015. A total energy control system strategy for the quadrotor helicopter. In: 2015 International Conference on Unmanned AIrcraft Systems (ICUAS). IEEE, pp. 286-293. https://doi.org/10.1109/ICUAS.2015.7152302

Von Mises, R., 1959. Theory of flight. Courier Corporation.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem