Mostrar el registro sencillo del ítem
dc.contributor.author | Illanes, Alejandro | es_ES |
dc.contributor.author | Martínez-de-la-Vega, Verónica | es_ES |
dc.date.accessioned | 2022-10-06T06:54:37Z | |
dc.date.available | 2022-10-06T06:54:37Z | |
dc.date.issued | 2022-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/187114 | |
dc.description.abstract | [EN] Let X be a metric continuum and n ∈ N. Let Fn(X) be the hyperspace of nonempty subsets of X with at most n points. If 1 ≤ m < n, we consider the quotient space Fnm(X) = Fn(X)/Fm(X). Given a mapping f : X → X, we consider the induced mappings fn : Fn(X) → Fn(X)and fnm : Fnm(X) → Fnm(X). In this paper we study relations among the dynamics of the mappings f, fn and fnm and we answer some questions, by F. Barragán, A. Santiago-Santos and J. Tenorio, related to the properties: minimality, irreducibility, strong transitivity and turbulence. | es_ES |
dc.description.sponsorship | This paper was partially supported by the projects “Teoría de Continuos, Hiperespacios y Sistemas Dinámicos III”, (IN 106319) of PAPIIT, DGAPA, UNAM; and “Teoría de Continuos e Hiperespacios, dos” (AI-S-15492) of CONACYT. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Continuum | es_ES |
dc.subject | Dynamical system | es_ES |
dc.subject | Induced mapping | es_ES |
dc.subject | Irreducibility | es_ES |
dc.subject | Symmetric product | es_ES |
dc.subject | Turbulence | es_ES |
dc.title | Dynamics of induced mappings on symmetric products, some answers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.17492 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM//IN 106319/Teoría de Continuos, Hiperespacios y Sistemas Dinámicos III | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACYT//AI-S-15492/Teoría de Continuos e Hiperespacios, dos | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Illanes, A.; Martínez-De-La-Vega, V. (2022). Dynamics of induced mappings on symmetric products, some answers. Applied General Topology. 23(2):235-242. https://doi.org/10.4995/agt.2022.17492 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.17492 | es_ES |
dc.description.upvformatpinicio | 235 | es_ES |
dc.description.upvformatpfin | 242 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17492 | es_ES |
dc.contributor.funder | Universidad Nacional Autónoma de México | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | J. Auslander, Minimal Flows and their Extensions, North-Holland Math. Studies, Vol. 153. North-Holland, Amsterdam, 1988. | es_ES |
dc.description.references | F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity and symmetric products, Turkish J. Math. 44, no. 2 (2020), 491-523. | es_ES |
dc.description.references | F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity on symmetric products, Math. Pannon. (N.S.) 27 (2021), 61-80. https://doi.org/10.1556/314.2020.00007 | es_ES |
dc.description.references | F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on $n$-fold symmetric product suspensions, Glas. Mat. Ser. 51 (71) (2016), 453-474. https://doi.org/10.3336/gm.51.2.12 | es_ES |
dc.description.references | F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on $n$-fold symmetric product suspensions II, Topology Appl. 288 (2021), 107484. https://doi.org/10.1016/j.topol.2020.107484 | es_ES |
dc.description.references | F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties of the dynamical system $(mathcal{SF}_{m}^{n}(X),mathcal{SF}_{m}^{n}(F))$, Appl. Gen. Topol. 21, no. 1 (2020), 17-34. https://doi.org/10.4995/agt.2020.11807 | es_ES |
dc.description.references | L. S. Block and W. A. Coppel, Stratification of continuous maps on an interval, Trans. Amer. Math. Soc. 297, no. 2 (1986), 587-604. https://doi.org/10.1090/S0002-9947-1986-0854086-8 | es_ES |
dc.description.references | J. Dugundji, Topology, Allyn and Bacon, Inc. 1966. | es_ES |
dc.description.references | J. L. Gómez-Rueda, A. Illanes and H. Méndez-Lango, Dynamic properties for the induced maps in the symmetric products, Chaos Solitons Fractals 45, no. 9-10 (2012), 1180-1187. https://doi.org/10.1016/j.chaos.2012.05.003 | es_ES |
dc.description.references | G. Higuera and A. Illanes, Induced mappings on symmetric products, Topology Proc. 37 (2011), 367-401. | es_ES |
dc.description.references | G. Higuera and A. Illanes, Fixed point property on symmetric products, Topology Appl. 159 (2012), 1-6. https://doi.org/10.1016/j.topol.2011.07.004 | es_ES |
dc.description.references | H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ. 41 (1989), 1-6. | es_ES |
dc.description.references | A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Math. Vol. 216, Marcel Dekker, Inc. New York and Basel, 1999. | es_ES |
dc.description.references | D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst. 6 (2005), 169-179. https://doi.org/10.1007/BF02972670 | es_ES |
dc.description.references | W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378. https://doi.org/10.1090/S0002-9947-1966-0197683-5 | es_ES |