- -

Dynamics of induced mappings on symmetric products, some answers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamics of induced mappings on symmetric products, some answers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Illanes, Alejandro es_ES
dc.contributor.author Martínez-de-la-Vega, Verónica es_ES
dc.date.accessioned 2022-10-06T06:54:37Z
dc.date.available 2022-10-06T06:54:37Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187114
dc.description.abstract [EN] Let X be a metric continuum and n ∈ N. Let Fn(X) be the hyperspace of nonempty subsets of X with at most n points. If 1 ≤ m < n, we consider the quotient space Fnm(X) = Fn(X)/Fm(X). Given a mapping f : X → X, we consider the induced mappings fn : Fn(X) → Fn(X)and fnm : Fnm(X) → Fnm(X). In this paper we study relations among the dynamics of the mappings f, fn and fnm and we answer some questions, by F. Barragán, A. Santiago-Santos and J. Tenorio, related to the properties: minimality, irreducibility, strong transitivity and turbulence. es_ES
dc.description.sponsorship This paper was partially supported by the projects “Teoría de Continuos, Hiperespacios y Sistemas Dinámicos III”, (IN 106319) of PAPIIT, DGAPA, UNAM; and “Teoría de Continuos e Hiperespacios, dos” (AI-S-15492) of CONACYT. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Continuum es_ES
dc.subject Dynamical system es_ES
dc.subject Induced mapping es_ES
dc.subject Irreducibility es_ES
dc.subject Symmetric product es_ES
dc.subject Turbulence es_ES
dc.title Dynamics of induced mappings on symmetric products, some answers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.17492
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IN 106319/Teoría de Continuos, Hiperespacios y Sistemas Dinámicos III es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//AI-S-15492/Teoría de Continuos e Hiperespacios, dos es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Illanes, A.; Martínez-De-La-Vega, V. (2022). Dynamics of induced mappings on symmetric products, some answers. Applied General Topology. 23(2):235-242. https://doi.org/10.4995/agt.2022.17492 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.17492 es_ES
dc.description.upvformatpinicio 235 es_ES
dc.description.upvformatpfin 242 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17492 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references J. Auslander, Minimal Flows and their Extensions, North-Holland Math. Studies, Vol. 153. North-Holland, Amsterdam, 1988. es_ES
dc.description.references F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity and symmetric products, Turkish J. Math. 44, no. 2 (2020), 491-523. es_ES
dc.description.references F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity on symmetric products, Math. Pannon. (N.S.) 27 (2021), 61-80. https://doi.org/10.1556/314.2020.00007 es_ES
dc.description.references F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on $n$-fold symmetric product suspensions, Glas. Mat. Ser. 51 (71) (2016), 453-474. https://doi.org/10.3336/gm.51.2.12 es_ES
dc.description.references F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on $n$-fold symmetric product suspensions II, Topology Appl. 288 (2021), 107484. https://doi.org/10.1016/j.topol.2020.107484 es_ES
dc.description.references F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties of the dynamical system $(mathcal{SF}_{m}^{n}(X),mathcal{SF}_{m}^{n}(F))$, Appl. Gen. Topol. 21, no. 1 (2020), 17-34. https://doi.org/10.4995/agt.2020.11807 es_ES
dc.description.references L. S. Block and W. A. Coppel, Stratification of continuous maps on an interval, Trans. Amer. Math. Soc. 297, no. 2 (1986), 587-604. https://doi.org/10.1090/S0002-9947-1986-0854086-8 es_ES
dc.description.references J. Dugundji, Topology, Allyn and Bacon, Inc. 1966. es_ES
dc.description.references J. L. Gómez-Rueda, A. Illanes and H. Méndez-Lango, Dynamic properties for the induced maps in the symmetric products, Chaos Solitons Fractals 45, no. 9-10 (2012), 1180-1187. https://doi.org/10.1016/j.chaos.2012.05.003 es_ES
dc.description.references G. Higuera and A. Illanes, Induced mappings on symmetric products, Topology Proc. 37 (2011), 367-401. es_ES
dc.description.references G. Higuera and A. Illanes, Fixed point property on symmetric products, Topology Appl. 159 (2012), 1-6. https://doi.org/10.1016/j.topol.2011.07.004 es_ES
dc.description.references H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ. 41 (1989), 1-6. es_ES
dc.description.references A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Math. Vol. 216, Marcel Dekker, Inc. New York and Basel, 1999. es_ES
dc.description.references D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst. 6 (2005), 169-179. https://doi.org/10.1007/BF02972670 es_ES
dc.description.references W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378. https://doi.org/10.1090/S0002-9947-1966-0197683-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem