- -

Dynamics of induced mappings on symmetric products, some answers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamics of induced mappings on symmetric products, some answers

Mostrar el registro completo del ítem

Illanes, A.; Martínez-De-La-Vega, V. (2022). Dynamics of induced mappings on symmetric products, some answers. Applied General Topology. 23(2):235-242. https://doi.org/10.4995/agt.2022.17492

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187114

Ficheros en el ítem

Metadatos del ítem

Título: Dynamics of induced mappings on symmetric products, some answers
Autor: Illanes, Alejandro Martínez-de-la-Vega, Verónica
Fecha difusión:
Resumen:
[EN] Let X be a metric continuum and n ∈ N. Let Fn(X) be the hyperspace of nonempty subsets of X with at most n points. If 1 ≤ m < n, we consider the quotient space Fnm(X) = Fn(X)/Fm(X). Given a mapping f : X → X, we ...[+]
Palabras clave: Continuum , Dynamical system , Induced mapping , Irreducibility , Symmetric product , Turbulence
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.17492
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.17492
Código del Proyecto:
info:eu-repo/grantAgreement/UNAM//IN 106319/Teoría de Continuos, Hiperespacios y Sistemas Dinámicos III
info:eu-repo/grantAgreement/CONACYT//AI-S-15492/Teoría de Continuos e Hiperespacios, dos
Agradecimientos:
This paper was partially supported by the projects “Teoría de Continuos, Hiperespacios y Sistemas Dinámicos III”, (IN 106319) of PAPIIT, DGAPA, UNAM; and “Teoría de Continuos e Hiperespacios, dos” (AI-S-15492) of CONACYT.[+]
Tipo: Artículo

References

J. Auslander, Minimal Flows and their Extensions, North-Holland Math. Studies, Vol. 153. North-Holland, Amsterdam, 1988.

F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity and symmetric products, Turkish J. Math. 44, no. 2 (2020), 491-523.

F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity on symmetric products, Math. Pannon. (N.S.) 27 (2021), 61-80. https://doi.org/10.1556/314.2020.00007 [+]
J. Auslander, Minimal Flows and their Extensions, North-Holland Math. Studies, Vol. 153. North-Holland, Amsterdam, 1988.

F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity and symmetric products, Turkish J. Math. 44, no. 2 (2020), 491-523.

F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity on symmetric products, Math. Pannon. (N.S.) 27 (2021), 61-80. https://doi.org/10.1556/314.2020.00007

F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on $n$-fold symmetric product suspensions, Glas. Mat. Ser. 51 (71) (2016), 453-474. https://doi.org/10.3336/gm.51.2.12

F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties for the induced maps on $n$-fold symmetric product suspensions II, Topology Appl. 288 (2021), 107484. https://doi.org/10.1016/j.topol.2020.107484

F. Barragán, A. Santiago-Santos and J. Tenorio, Dynamic properties of the dynamical system $(mathcal{SF}_{m}^{n}(X),mathcal{SF}_{m}^{n}(F))$, Appl. Gen. Topol. 21, no. 1 (2020), 17-34. https://doi.org/10.4995/agt.2020.11807

L. S. Block and W. A. Coppel, Stratification of continuous maps on an interval, Trans. Amer. Math. Soc. 297, no. 2 (1986), 587-604. https://doi.org/10.1090/S0002-9947-1986-0854086-8

J. Dugundji, Topology, Allyn and Bacon, Inc. 1966.

J. L. Gómez-Rueda, A. Illanes and H. Méndez-Lango, Dynamic properties for the induced maps in the symmetric products, Chaos Solitons Fractals 45, no. 9-10 (2012), 1180-1187. https://doi.org/10.1016/j.chaos.2012.05.003

G. Higuera and A. Illanes, Induced mappings on symmetric products, Topology Proc. 37 (2011), 367-401.

G. Higuera and A. Illanes, Fixed point property on symmetric products, Topology Appl. 159 (2012), 1-6. https://doi.org/10.1016/j.topol.2011.07.004

H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ. 41 (1989), 1-6.

A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Math. Vol. 216, Marcel Dekker, Inc. New York and Basel, 1999.

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst. 6 (2005), 169-179. https://doi.org/10.1007/BF02972670

W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378. https://doi.org/10.1090/S0002-9947-1966-0197683-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem