- -

The largest topological ring of functions endowed with the m-topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The largest topological ring of functions endowed with the m-topology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chauhan, Tarun Kumar es_ES
dc.contributor.author Jindal, Varun es_ES
dc.date.accessioned 2022-10-06T07:31:04Z
dc.date.available 2022-10-06T07:31:04Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187119
dc.description.abstract [EN] The purpose of this article is to identify the largest subring of the ring of all real valued functions on a Tychonoff space X, which forms a topological ring endowed with the m-topology. es_ES
dc.description.sponsorship The second author acknowledges the support of NBHM Research Grant 02011/6/2020/NBHM(R.P) R&D II/6277. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Locally bounded functions es_ES
dc.subject Real valued functions es_ES
dc.subject Rings of functions es_ES
dc.subject M-topology es_ES
dc.title The largest topological ring of functions endowed with the m-topology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.17080
dc.relation.projectID info:eu-repo/grantAgreement/NBHM//02011%2F6%2F2020%2FNBHM es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Chauhan, TK.; Jindal, V. (2022). The largest topological ring of functions endowed with the m-topology. Applied General Topology. 23(2):281-286. https://doi.org/10.4995/agt.2022.17080 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.17080 es_ES
dc.description.upvformatpinicio 281 es_ES
dc.description.upvformatpfin 286 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17080 es_ES
dc.contributor.funder National Board for Higher Mathematics es_ES
dc.description.references F. Azarpanah, F. Manshoor and R. Mohamadian, Connectedness and compactness in C(X) with m-topology and generalized m-topology, Topol. Appl. 159 (2012), 3486-3493. https://doi.org/10.1016/j.topol.2012.08.010 es_ES
dc.description.references F. Azarpanah, M. Paimann and A. R. Salehi, Connectedness of some rings of quotients of C(X) with them-topology, Comment. Math. Univ. Carolin. 56 (2015), 63-76. https://doi.org/10.14712/1213-7243.015.106 es_ES
dc.description.references L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York,1976. Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43. https://doi.org/10.1007/978-1-4615-7819-2 es_ES
dc.description.references J. Gomez-Prez and W. W. McGovern, Them-topology on C m(X) revisited, Topol. Appl. 153, no. 11 (2006), 1838-1848. https://doi.org/10.1016/j.topol.2005.06.016 es_ES
dc.description.references E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64(1948), 45-99. https://doi.org/10.1090/S0002-9947-1948-0026239-9 es_ES
dc.description.references L. Hola and V. Jindal, On graph and fine topologies, Topol. Proc. 49 (2017), 65-73. es_ES
dc.description.references L. Hola and R. A. McCoy, Compactness in the fine and related topologies, Topol. Appl.109 (2001), 183-190. https://doi.org/10.1016/S0166-8641(99)00160-1 es_ES
dc.description.references L. Hola and B. Novotny, Topology of uniform convergence and m-topology on C(X), Mediterr. J. Math. 14 (2017): 70. https://doi.org/10.1007/s00009-017-0861-6 es_ES
dc.description.references J. G. Horne, Countable paracompactness and cb-spaces, Notices. Amer. Math. Soc. 6 (1959), 629-630. es_ES
dc.description.references J. Mack, On a class of countably paracompact spaces, Proc. Amer. Math. Soc. 16 (1965),467-472. https://doi.org/10.1090/S0002-9939-1965-0177388-1 es_ES
dc.description.references G. Di Maio, L. Hola, D. Holy and R. A. McCoy, Topologies on the space of continuous functions, Topol. Appl. 86 (1998), 105-122. https://doi.org/10.1016/S0166-8641(97)00114-4 es_ES
dc.description.references R. A. McCoy, Fine topology on function spaces, Int. J. Math. Math. Sci. 9 (1986),417-424. https://doi.org/10.1155/S0161171286000534 es_ES
dc.description.references R. A. McCoy, S. Kundu and V. Jindal, Function spaces with uniform, fine and graphtopologies, Springer Briefs in Mathematics, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-77054-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem