- -

The largest topological ring of functions endowed with the m-topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The largest topological ring of functions endowed with the m-topology

Mostrar el registro completo del ítem

Chauhan, TK.; Jindal, V. (2022). The largest topological ring of functions endowed with the m-topology. Applied General Topology. 23(2):281-286. https://doi.org/10.4995/agt.2022.17080

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187119

Ficheros en el ítem

Metadatos del ítem

Título: The largest topological ring of functions endowed with the m-topology
Autor: Chauhan, Tarun Kumar Jindal, Varun
Fecha difusión:
Resumen:
[EN] The purpose of this article is to identify the largest subring of the ring of all real valued functions on a Tychonoff space X, which forms a topological ring endowed with the m-topology.
Palabras clave: Locally bounded functions , Real valued functions , Rings of functions , M-topology
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.17080
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.17080
Código del Proyecto:
info:eu-repo/grantAgreement/NBHM//02011%2F6%2F2020%2FNBHM
Agradecimientos:
The second author acknowledges the support of NBHM Research Grant 02011/6/2020/NBHM(R.P) R&D II/6277.
Tipo: Artículo

References

F. Azarpanah, F. Manshoor and R. Mohamadian, Connectedness and compactness in C(X) with m-topology and generalized m-topology, Topol. Appl. 159 (2012), 3486-3493. https://doi.org/10.1016/j.topol.2012.08.010

F. Azarpanah, M. Paimann and A. R. Salehi, Connectedness of some rings of quotients of C(X) with them-topology, Comment. Math. Univ. Carolin. 56 (2015), 63-76. https://doi.org/10.14712/1213-7243.015.106

L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York,1976. Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43. https://doi.org/10.1007/978-1-4615-7819-2 [+]
F. Azarpanah, F. Manshoor and R. Mohamadian, Connectedness and compactness in C(X) with m-topology and generalized m-topology, Topol. Appl. 159 (2012), 3486-3493. https://doi.org/10.1016/j.topol.2012.08.010

F. Azarpanah, M. Paimann and A. R. Salehi, Connectedness of some rings of quotients of C(X) with them-topology, Comment. Math. Univ. Carolin. 56 (2015), 63-76. https://doi.org/10.14712/1213-7243.015.106

L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York,1976. Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43. https://doi.org/10.1007/978-1-4615-7819-2

J. Gomez-Prez and W. W. McGovern, Them-topology on C m(X) revisited, Topol. Appl. 153, no. 11 (2006), 1838-1848. https://doi.org/10.1016/j.topol.2005.06.016

E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64(1948), 45-99. https://doi.org/10.1090/S0002-9947-1948-0026239-9

L. Hola and V. Jindal, On graph and fine topologies, Topol. Proc. 49 (2017), 65-73.

L. Hola and R. A. McCoy, Compactness in the fine and related topologies, Topol. Appl.109 (2001), 183-190. https://doi.org/10.1016/S0166-8641(99)00160-1

L. Hola and B. Novotny, Topology of uniform convergence and m-topology on C(X), Mediterr. J. Math. 14 (2017): 70. https://doi.org/10.1007/s00009-017-0861-6

J. G. Horne, Countable paracompactness and cb-spaces, Notices. Amer. Math. Soc. 6 (1959), 629-630.

J. Mack, On a class of countably paracompact spaces, Proc. Amer. Math. Soc. 16 (1965),467-472. https://doi.org/10.1090/S0002-9939-1965-0177388-1

G. Di Maio, L. Hola, D. Holy and R. A. McCoy, Topologies on the space of continuous functions, Topol. Appl. 86 (1998), 105-122. https://doi.org/10.1016/S0166-8641(97)00114-4

R. A. McCoy, Fine topology on function spaces, Int. J. Math. Math. Sci. 9 (1986),417-424. https://doi.org/10.1155/S0161171286000534

R. A. McCoy, S. Kundu and V. Jindal, Function spaces with uniform, fine and graphtopologies, Springer Briefs in Mathematics, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-77054-3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem