- -

Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence

Show full item record

Kumar, M.; Tyagi, BK. (2022). Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence. Applied General Topology. 23(2):303-314. https://doi.org/10.4995/agt.2022.16925

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187124

Files in this item

Item Metadata

Title: Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence
Author: Kumar, Mandeep Tyagi, Brij Kishore
Issued date:
Abstract:
[EN] For topological spaces X and Y, let Qp(X,Y) be the space of all quasicontinuous functions from X to Y with the topology of pointwise convergence. In this paper, we study the cardinal invariants such as cellularity, ...[+]
Subjects: Quasicontinuous functions , Topology of pointwise convergence , Character , Density , Weight , Cellularity , Spread , Induced map , Restriction map
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.16925
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2022.16925
Project ID:
info:eu-repo/grantAgreement/UGC//DEC18-414765
Thanks:
The first author acknowledges the fellowship grant of University Grant Commission, India with Student-ID DEC18-414765.
Type: Artículo

References

A. V. Arhangel'skii, Topological Function Spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992.

J. Borsík, Points of continuity, quasicontinuity and cliquishness, Rend. Istit. Mat. Univ. Trieste 26 (1994), 5-20.

R. Cazacu and J. D. Lawson, Quasicontinuous functions, domains, and extended calculus, Appl. Gen. Topol. 8 (2007), 1-33. https://doi.org/10.4995/agt.2007.1908 [+]
A. V. Arhangel'skii, Topological Function Spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992.

J. Borsík, Points of continuity, quasicontinuity and cliquishness, Rend. Istit. Mat. Univ. Trieste 26 (1994), 5-20.

R. Cazacu and J. D. Lawson, Quasicontinuous functions, domains, and extended calculus, Appl. Gen. Topol. 8 (2007), 1-33. https://doi.org/10.4995/agt.2007.1908

A. Crannell, M. Frantz and M. LeMasurier, Closed relations and equivalence classes of quasicontinuous functions, Real Anal. Exchange 31 (2005/06), 409-424. https://doi.org/10.14321/realanalexch.31.2.0409

R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.

L. Holá and D. Holý, Minimal {USCO} maps, densely continuous forms and upper semi-continuous functions, Rocky Mountain J. Math. 39 (2009), 545-562. https://doi.org/10.1216/RMJ-2009-39-2-545

L. Holá and D. Holý, Pointwise convergence of quasicontinuous mappings and {B}aire spaces, Rocky Mountain J. Math. 41 (2011), 1883-1894. https://doi.org/10.1216/RMJ-2011-41-6-1883

L. Holá and D. Holý, Quasicontinuous functions and the topology of pointwise convergence, Topology Appl. 282 (2020), Article No. 107301. https://doi.org/10.1016/j.topol.2020.107301

D. Holý and L. Matejíčka, Quasicontinuous functions, minimal {USCO} maps and topology of pointwise convergence, Math. Slovaca 60 (2010), 507-520. https://doi.org/10.2478/s12175-010-0029-3

S. Kempisty, Sur les fonctions quasicontinues, Fundamenta Mathematicae 19 (1932), 184-197. https://doi.org/10.4064/fm-19-1-184-197

P. S. Kenderov, I. S. Kortezov and W. B. Moors, Topological games and topological groups, Topology Appl. 109 (2001), 157-165. https://doi.org/10.1016/S0166-8641(99)00152-2

P. S. Kenderov, I. S. Kortezov and W. B. Moors, Continuity points of quasi-continuous mappings, Topology Appl. 109 (2001), 321-346. https://doi.org/10.1016/S0166-8641(99)00180-7

N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. https://doi.org/10.1080/00029890.1963.11990039

R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics, vol. 1315, Springer-Verlag, Berlin, 1988. https://doi.org/10.1007/BFb0098389

T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988/89), 259-306. https://doi.org/10.2307/44151947

Z. Piotrowski, A survey of results concerning generalized continuity of topological spaces, Acta Math. Univ. Comenian. 52/53 (1987), 91-110.

V. V. Tkachuk, A $C_p$-Theory Problem Book, Topological and function spaces, Problem Books in Mathematics, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7442-6

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record