- -

Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kumar, Mandeep es_ES
dc.contributor.author Tyagi, Brij Kishore es_ES
dc.date.accessioned 2022-10-06T07:55:15Z
dc.date.available 2022-10-06T07:55:15Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187124
dc.description.abstract [EN] For topological spaces X and Y, let Qp(X,Y) be the space of all quasicontinuous functions from X to Y with the topology of pointwise convergence. In this paper, we study the cardinal invariants such as cellularity, character, weight, density, pseudocharacter and spread of the space Qp(X,Y). We also discuss the properties of the restriction and induced maps related to the space Qp(X,Y). es_ES
dc.description.sponsorship The first author acknowledges the fellowship grant of University Grant Commission, India with Student-ID DEC18-414765. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Quasicontinuous functions es_ES
dc.subject Topology of pointwise convergence es_ES
dc.subject Character es_ES
dc.subject Density es_ES
dc.subject Weight es_ES
dc.subject Cellularity es_ES
dc.subject Spread es_ES
dc.subject Induced map es_ES
dc.subject Restriction map es_ES
dc.title Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.16925
dc.relation.projectID info:eu-repo/grantAgreement/UGC//DEC18-414765 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kumar, M.; Tyagi, BK. (2022). Cardinal invariants and special maps of quasicontinuous functions with the topology of pointwise convergence. Applied General Topology. 23(2):303-314. https://doi.org/10.4995/agt.2022.16925 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.16925 es_ES
dc.description.upvformatpinicio 303 es_ES
dc.description.upvformatpfin 314 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16925 es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.description.references A. V. Arhangel'skii, Topological Function Spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. es_ES
dc.description.references J. Borsík, Points of continuity, quasicontinuity and cliquishness, Rend. Istit. Mat. Univ. Trieste 26 (1994), 5-20. es_ES
dc.description.references R. Cazacu and J. D. Lawson, Quasicontinuous functions, domains, and extended calculus, Appl. Gen. Topol. 8 (2007), 1-33. https://doi.org/10.4995/agt.2007.1908 es_ES
dc.description.references A. Crannell, M. Frantz and M. LeMasurier, Closed relations and equivalence classes of quasicontinuous functions, Real Anal. Exchange 31 (2005/06), 409-424. https://doi.org/10.14321/realanalexch.31.2.0409 es_ES
dc.description.references R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. es_ES
dc.description.references L. Holá and D. Holý, Minimal {USCO} maps, densely continuous forms and upper semi-continuous functions, Rocky Mountain J. Math. 39 (2009), 545-562. https://doi.org/10.1216/RMJ-2009-39-2-545 es_ES
dc.description.references L. Holá and D. Holý, Pointwise convergence of quasicontinuous mappings and {B}aire spaces, Rocky Mountain J. Math. 41 (2011), 1883-1894. https://doi.org/10.1216/RMJ-2011-41-6-1883 es_ES
dc.description.references L. Holá and D. Holý, Quasicontinuous functions and the topology of pointwise convergence, Topology Appl. 282 (2020), Article No. 107301. https://doi.org/10.1016/j.topol.2020.107301 es_ES
dc.description.references D. Holý and L. Matejíčka, Quasicontinuous functions, minimal {USCO} maps and topology of pointwise convergence, Math. Slovaca 60 (2010), 507-520. https://doi.org/10.2478/s12175-010-0029-3 es_ES
dc.description.references S. Kempisty, Sur les fonctions quasicontinues, Fundamenta Mathematicae 19 (1932), 184-197. https://doi.org/10.4064/fm-19-1-184-197 es_ES
dc.description.references P. S. Kenderov, I. S. Kortezov and W. B. Moors, Topological games and topological groups, Topology Appl. 109 (2001), 157-165. https://doi.org/10.1016/S0166-8641(99)00152-2 es_ES
dc.description.references P. S. Kenderov, I. S. Kortezov and W. B. Moors, Continuity points of quasi-continuous mappings, Topology Appl. 109 (2001), 321-346. https://doi.org/10.1016/S0166-8641(99)00180-7 es_ES
dc.description.references N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. https://doi.org/10.1080/00029890.1963.11990039 es_ES
dc.description.references R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics, vol. 1315, Springer-Verlag, Berlin, 1988. https://doi.org/10.1007/BFb0098389 es_ES
dc.description.references T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988/89), 259-306. https://doi.org/10.2307/44151947 es_ES
dc.description.references Z. Piotrowski, A survey of results concerning generalized continuity of topological spaces, Acta Math. Univ. Comenian. 52/53 (1987), 91-110. es_ES
dc.description.references V. V. Tkachuk, A $C_p$-Theory Problem Book, Topological and function spaces, Problem Books in Mathematics, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7442-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem