- -

The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring

Mostrar el registro completo del ítem

Salam, S.; Al-Zoubi, K. (2022). The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring. Applied General Topology. 23(2):345-361. https://doi.org/10.4995/agt.2022.16332

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187136

Ficheros en el ítem

Metadatos del ítem

Título: The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring
Autor: Salam, Saif Al-Zoubi, Khaldoun
Fecha difusión:
Resumen:
[EN] Let R be a G-graded ring and M be a G-graded R-module. We define the graded primary spectrum of M, denoted by PSG(M), to be the set of all graded primary submodules Q of M such that (GrM(Q) :RM) = Gr((Q:RM)). In this ...[+]
Palabras clave: Graded primary submodules , Graded primary spectrum , Zariski topology
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.16332
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.16332
Tipo: Artículo

References

K. Al-Zoubi, The graded primary radical of a graded submodules, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 1 (2016), 395-402.

K. Al-Zoubi, I. Jaradat and M. Al-Dolat, On graded P-compactly packed modules, Open Mathematics 13, no. 1 (2015), 487-492. https://doi.org/10.1515/math-2015-0045

S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33, no. 1 (2006), 3-7. [+]
K. Al-Zoubi, The graded primary radical of a graded submodules, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 1 (2016), 395-402.

K. Al-Zoubi, I. Jaradat and M. Al-Dolat, On graded P-compactly packed modules, Open Mathematics 13, no. 1 (2015), 487-492. https://doi.org/10.1515/math-2015-0045

S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33, no. 1 (2006), 3-7.

S. E. Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum. 1, no. 38 (2006), 1871-1880. https://doi.org/10.12988/imf.2006.06162

S. E. Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378.

N. Bourbaki, Commutative Algebra. Chapter 1-7. Springer-Verlag, Berlin, 1989.

A. Y. Darani, Topology on $Spec_{g}(M),$ Buletinul Academiei De Stiinte 3 (67) (2011), 45-53.

J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. in Algebra 26, no. 6 (1998), 1867-1883. https://doi.org/10.1080/00927879808826244

M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X

M. Jaradat and K. Al-Zoubi, The Quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring, preprint.

C. Nastasescu and V. F. Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics Vol. 758, Springer-Verlag, Berlin, 2004.

C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holand, Amsterdam, 1982.

C. Nastasescu and V. F. Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., Vol. 1836, Berlin-Heidelberg: Springer-Verlag, 2004. https://doi.org/10.1007/b94904

N. A. Ozkirisci, K. H. Oral and U. Tekir, Graded prime spectrum of a graded module, Iran. J. Sci. Technol. 37A3 (2013), 411-420.

K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turk. J. Math. 35 (2011), 159-167. https://doi.org/10.3906/mat-0904-11

M. Refai, On properties of G-spec(R), Sci. Math. Jpn. 53, no. 3 (2001), 411-415. https://doi.org/10.1186/BF03353250

M. Refai and K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004), 217-229.

M. Refai, M. Hailat and S. Obiedat, Graded radicals on graded prime spectra, Far East J. of Math. Sci., part I (2000), 59-73.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem