- -

The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salam, Saif es_ES
dc.contributor.author Al-Zoubi, Khaldoun es_ES
dc.date.accessioned 2022-10-06T09:38:02Z
dc.date.available 2022-10-06T09:38:02Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187136
dc.description.abstract [EN] Let R be a G-graded ring and M be a G-graded R-module. We define the graded primary spectrum of M, denoted by PSG(M), to be the set of all graded primary submodules Q of M such that (GrM(Q) :RM) = Gr((Q:RM)). In this paper, we define a topology on PSG(M) having the Zariski topology on the graded prime spectrum SpecG(M) as a subspace topology, and investigate several topological properties of this topological space. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Graded primary submodules es_ES
dc.subject Graded primary spectrum es_ES
dc.subject Zariski topology es_ES
dc.title The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.16332
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Salam, S.; Al-Zoubi, K. (2022). The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring. Applied General Topology. 23(2):345-361. https://doi.org/10.4995/agt.2022.16332 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.16332 es_ES
dc.description.upvformatpinicio 345 es_ES
dc.description.upvformatpfin 361 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16332 es_ES
dc.description.references K. Al-Zoubi, The graded primary radical of a graded submodules, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 1 (2016), 395-402. es_ES
dc.description.references K. Al-Zoubi, I. Jaradat and M. Al-Dolat, On graded P-compactly packed modules, Open Mathematics 13, no. 1 (2015), 487-492. https://doi.org/10.1515/math-2015-0045 es_ES
dc.description.references S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33, no. 1 (2006), 3-7. es_ES
dc.description.references S. E. Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum. 1, no. 38 (2006), 1871-1880. https://doi.org/10.12988/imf.2006.06162 es_ES
dc.description.references S. E. Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378. es_ES
dc.description.references N. Bourbaki, Commutative Algebra. Chapter 1-7. Springer-Verlag, Berlin, 1989. es_ES
dc.description.references A. Y. Darani, Topology on $Spec_{g}(M),$ Buletinul Academiei De Stiinte 3 (67) (2011), 45-53. es_ES
dc.description.references J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. in Algebra 26, no. 6 (1998), 1867-1883. https://doi.org/10.1080/00927879808826244 es_ES
dc.description.references M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X es_ES
dc.description.references M. Jaradat and K. Al-Zoubi, The Quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring, preprint. es_ES
dc.description.references C. Nastasescu and V. F. Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics Vol. 758, Springer-Verlag, Berlin, 2004. es_ES
dc.description.references C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holand, Amsterdam, 1982. es_ES
dc.description.references C. Nastasescu and V. F. Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., Vol. 1836, Berlin-Heidelberg: Springer-Verlag, 2004. https://doi.org/10.1007/b94904 es_ES
dc.description.references N. A. Ozkirisci, K. H. Oral and U. Tekir, Graded prime spectrum of a graded module, Iran. J. Sci. Technol. 37A3 (2013), 411-420. es_ES
dc.description.references K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turk. J. Math. 35 (2011), 159-167. https://doi.org/10.3906/mat-0904-11 es_ES
dc.description.references M. Refai, On properties of G-spec(R), Sci. Math. Jpn. 53, no. 3 (2001), 411-415. https://doi.org/10.1186/BF03353250 es_ES
dc.description.references M. Refai and K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004), 217-229. es_ES
dc.description.references M. Refai, M. Hailat and S. Obiedat, Graded radicals on graded prime spectra, Far East J. of Math. Sci., part I (2000), 59-73. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem