- -

Fixed point theorems for a new class of nonexpansive mappings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point theorems for a new class of nonexpansive mappings

Mostrar el registro completo del ítem

Pant, R.; Shukla, R. (2022). Fixed point theorems for a new class of nonexpansive mappings. Applied General Topology. 23(2):377-390. https://doi.org/10.4995/agt.2022.17359

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187138

Ficheros en el ítem

Metadatos del ítem

Título: Fixed point theorems for a new class of nonexpansive mappings
Autor: Pant, Rajendra Shukla, Rahul
Fecha difusión:
Resumen:
[EN] We consider a new class of nonlinear mappings that generalizes two well-known classes of nonexpansive type mappings and extends some other classes of mappings. We present some existence and convergence results for ...[+]
Palabras clave: Opial property , Condition (C) , α-nonexpansive
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.17359
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.17359
Tipo: Artículo

References

R. P. Agarwal, D. O'Regan and D. R. Sahu, Fixed point theory for Lipschitzian-typemappings with applications, volume 6 Topological Fixed Point Theory and Its Applica-tions, Springer, New York, 2009. https://doi.org/10.1155/2009/439176

K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theoremsforλ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335-343.

K. Aoyama and F. Kohsaka, Fixed point theorem forα-nonexpansive mappings in Ba-nach spaces, Nonlinear Anal. 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057 [+]
R. P. Agarwal, D. O'Regan and D. R. Sahu, Fixed point theory for Lipschitzian-typemappings with applications, volume 6 Topological Fixed Point Theory and Its Applica-tions, Springer, New York, 2009. https://doi.org/10.1155/2009/439176

K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theoremsforλ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335-343.

K. Aoyama and F. Kohsaka, Fixed point theorem forα-nonexpansive mappings in Ba-nach spaces, Nonlinear Anal. 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057

D. Ariza-Ruiz, C. Hern ́andez Linares, E. Llorens-Fuster and E. Moreno-G ́alvez, Onα-nonexpansive mappings in Banach spaces, Carpathian J. Math. 32 (2016), 13-28. https://doi.org/10.37193/CJM.2016.01.02

J. Bogin, A generalization of a fixed point theorem of Goebel, Kirk and Shimi, Canad.Math. Bull. 19 (1976), 7-12. https://doi.org/10.4153/CMB-1976-002-7

F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc.Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272

F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041- 1044. https://doi.org/10.1073/pnas.54.4.1041

K. Goebel and W. A. Kirk, Topics in metric fixed point theory, volume 28 Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511526152

D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251- 258. https://doi.org/10.1002/mana.19650300312

W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004- 1006. https://doi.org/10.2307/2313345

F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel), 91 (2008), 166- 177. https://doi.org/10.1007/s00013-008-2545-8

M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591- 597. https://doi.org/10.1090/S0002-9904-1967-11761-0

R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 38, no. 2 (2017), 248- 266. https://doi.org/10.1080/01630563.2016.1276075

R. Pant, R. Shukla and P. Patel, Nonexpansive mappings, their extensions and generalizations in Banach spaces, in: Metric fixed point theory - applications in science, engineering and behavioural sicences, 309- 343, Forum Interdiscip. Math., Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0_14

H. F. Senter and W. G. Dotson Jr, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375- 380. https://doi.org/10.1090/S0002-9939-1974-0346608-8

R. Shukla, R. Pant and P. Kumam, On the α-nonexpansive mapping in partially ordered hyperbolic metric spaces, J. Math. Anal. 8 (2017), 1- 15.

T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088- 1095. https://doi.org/10.1016/j.jmaa.2007.09.023

W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79- 88.

E. Zeidler, Nonlinear functional analysis and its applications, I, Fixed-point theorems, Springer-Verlag, New York, 1986. https://doi.org/10.1007/978-1-4612-4838-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem