- -

Fixed point theorems for a new class of nonexpansive mappings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point theorems for a new class of nonexpansive mappings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pant, Rajendra es_ES
dc.contributor.author Shukla, Rahul es_ES
dc.date.accessioned 2022-10-06T09:47:21Z
dc.date.available 2022-10-06T09:47:21Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187138
dc.description.abstract [EN] We consider a new class of nonlinear mappings that generalizes two well-known classes of nonexpansive type mappings and extends some other classes of mappings. We present some existence and convergence results for this class of mappings. Some illustrative examples presented herein show the generality of the obtained results. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Opial property es_ES
dc.subject Condition (C) es_ES
dc.subject α-nonexpansive es_ES
dc.title Fixed point theorems for a new class of nonexpansive mappings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.17359
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Pant, R.; Shukla, R. (2022). Fixed point theorems for a new class of nonexpansive mappings. Applied General Topology. 23(2):377-390. https://doi.org/10.4995/agt.2022.17359 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.17359 es_ES
dc.description.upvformatpinicio 377 es_ES
dc.description.upvformatpfin 390 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17359 es_ES
dc.description.references R. P. Agarwal, D. O'Regan and D. R. Sahu, Fixed point theory for Lipschitzian-typemappings with applications, volume 6 Topological Fixed Point Theory and Its Applica-tions, Springer, New York, 2009. https://doi.org/10.1155/2009/439176 es_ES
dc.description.references K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theoremsforλ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335-343. es_ES
dc.description.references K. Aoyama and F. Kohsaka, Fixed point theorem forα-nonexpansive mappings in Ba-nach spaces, Nonlinear Anal. 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057 es_ES
dc.description.references D. Ariza-Ruiz, C. Hern ́andez Linares, E. Llorens-Fuster and E. Moreno-G ́alvez, Onα-nonexpansive mappings in Banach spaces, Carpathian J. Math. 32 (2016), 13-28. https://doi.org/10.37193/CJM.2016.01.02 es_ES
dc.description.references J. Bogin, A generalization of a fixed point theorem of Goebel, Kirk and Shimi, Canad.Math. Bull. 19 (1976), 7-12. https://doi.org/10.4153/CMB-1976-002-7 es_ES
dc.description.references F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc.Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272 es_ES
dc.description.references F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041- 1044. https://doi.org/10.1073/pnas.54.4.1041 es_ES
dc.description.references K. Goebel and W. A. Kirk, Topics in metric fixed point theory, volume 28 Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511526152 es_ES
dc.description.references D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251- 258. https://doi.org/10.1002/mana.19650300312 es_ES
dc.description.references W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004- 1006. https://doi.org/10.2307/2313345 es_ES
dc.description.references F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel), 91 (2008), 166- 177. https://doi.org/10.1007/s00013-008-2545-8 es_ES
dc.description.references M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042 es_ES
dc.description.references Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591- 597. https://doi.org/10.1090/S0002-9904-1967-11761-0 es_ES
dc.description.references R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 38, no. 2 (2017), 248- 266. https://doi.org/10.1080/01630563.2016.1276075 es_ES
dc.description.references R. Pant, R. Shukla and P. Patel, Nonexpansive mappings, their extensions and generalizations in Banach spaces, in: Metric fixed point theory - applications in science, engineering and behavioural sicences, 309- 343, Forum Interdiscip. Math., Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0_14 es_ES
dc.description.references H. F. Senter and W. G. Dotson Jr, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375- 380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 es_ES
dc.description.references R. Shukla, R. Pant and P. Kumam, On the α-nonexpansive mapping in partially ordered hyperbolic metric spaces, J. Math. Anal. 8 (2017), 1- 15. es_ES
dc.description.references T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088- 1095. https://doi.org/10.1016/j.jmaa.2007.09.023 es_ES
dc.description.references W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79- 88. es_ES
dc.description.references E. Zeidler, Nonlinear functional analysis and its applications, I, Fixed-point theorems, Springer-Verlag, New York, 1986. https://doi.org/10.1007/978-1-4612-4838-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem