- -

Best proximity point (pair) results via MNC in Busemann convex metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Best proximity point (pair) results via MNC in Busemann convex metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gabeleh, Moosa es_ES
dc.contributor.author Patle, Pradip Ramesh es_ES
dc.date.accessioned 2022-10-06T09:51:57Z
dc.date.available 2022-10-06T09:51:57Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187140
dc.description.abstract [EN] In this paper, we present a new class of cyclic (noncyclic) α-ψ and β-ψ condensing operators and survey the existence of best proximity points (pairs) as well as coupled best proximity points (pairs) in the setting of reflexive Busemann convex spaces. Then an application of the main existence result to study the existence of an optimal solution for a system of differential equations is demonstrated. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Coupled best proximity point (pair) es_ES
dc.subject Cyclic (noncyclic) condensing operator es_ES
dc.subject Optimum solution es_ES
dc.subject Busemann convex space es_ES
dc.title Best proximity point (pair) results via MNC in Busemann convex metric spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.14000
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gabeleh, M.; Patle, PR. (2022). Best proximity point (pair) results via MNC in Busemann convex metric spaces. Applied General Topology. 23(2):405-424. https://doi.org/10.4995/agt.2022.14000 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.14000 es_ES
dc.description.upvformatpinicio 405 es_ES
dc.description.upvformatpfin 424 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\14000 es_ES
dc.description.references R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, vol. 55, Birkhäuser, Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7 es_ES
dc.description.references M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of noncompactness in metric fixed point theory, Operator Theory: Advances and Applications, vol. 99, Birkhäuser, Basel (1997). https://doi.org/10.1007/978-3-0348-8920-9 es_ES
dc.description.references G. C. Ahuja, T. D. Narang and S. Trehan, Best approximation on convex sets in a metric space, J. Approx. Theory 12 (1974), 94-97. https://doi.org/10.1016/0021-9045(74)90062-8 es_ES
dc.description.references A. Berdellima, Complete sets and closure of their convex hulls in CAT(0) spaces, arXiv:2109.06002v1. es_ES
dc.description.references M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin Heidelberg, 1999. https://doi.org/10.1007/978-3-662-12494-9 es_ES
dc.description.references H. Busemann, Geometry of geodesics, Academic Press, (1955) New York. es_ES
dc.description.references A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171 (2005), 283-293. https://doi.org/10.4064/sm171-3-5 es_ES
dc.description.references R. Espínola and A. Nicolae, Mutually nearest and farthest points of sets and the drop theorem in geodesic spaces, Monatsh. Math. 165 (2012), 173-197. https://doi.org/10.1007/s00605-010-0266-0 es_ES
dc.description.references R. Espínola and B. Piatek, Fixed point property and unbounded sets in CAT(0) spaces, J. Math. Anal. Appl. 408 (2013), 638-654. https://doi.org/10.1016/j.jmaa.2013.06.038 es_ES
dc.description.references R. Espínola, O. Madiedo and A. Nicolae, Borsuk-Dugundji type extensions theorems with Busemann convex target spaces, Annales Academiae Scientiarum Fennicae Mathematica 43 (2018), 225-238. https://doi.org/10.5186/aasfm.2018.4313 es_ES
dc.description.references A. Fernández León and A. Nicolae, Best proximity pair results relatively nonexpansive mappings in geodesic spaces, Numer. Funct. Anal. Optim. 35 (2014), 1399-1418. https://doi.org/10.1080/01630563.2014.895762 es_ES
dc.description.references M. Gabeleh and J. Markin, Optimum solutions for a system of differential equations via measure of noncompactness, Indagationes Mathematicae 29 (2018), 895-906. https://doi.org/10.1016/j.indag.2018.01.008 es_ES
dc.description.references M. Gabeleh and H. P. Künzi, Condensing operators of integral type in Busemann reflexive convex spaces, Bull. Malays. Math. Sci. Soc. 43 (2020), 1971-1988. https://doi.org/10.1007/s40840-019-00785-x es_ES
dc.description.references M. Gabeleh and H. P. Künzi, Mappings of generalized condensing type in metric spaces with Busemann convex structure, Bull. Iran. Math. Soc. 46 (2020), 1465-1483. https://doi.org/10.1007/s41980-019-00336-x es_ES
dc.description.references M. Gabeleh, Best proximity points for cyclic mappings, Ph.D Thesis (in Persian) (2012). es_ES
dc.description.references M. Gabeleh and J. Markin, Global optimal solutions of a system of differential equations via measure of noncompactness, Filomat 35 (2021), 5059-5071. https://doi.org/10.2298/FIL2115059G es_ES
dc.description.references A. Latif, N. Saleem and M. Abbas, α-optimal best proximity point result involving proximal contraction mappings in fuzzy metric spaces, J. Nonlin. Sci. Appl. 10 (2017), 92-103. https://doi.org/10.22436/jnsa.010.01.09 es_ES
dc.description.references P. R. Patle, D. K. Patel and R. Arab, Darbo type best proximity point results via simulation function with application, Afrika Mathematika 31 (2020), 833-845. https://doi.org/10.1007/s13370-020-00764-7 es_ES
dc.description.references H. Rehman, D. Gopal and P. Kumam, Generalizations of Darbo's fixed point theorem for a new condensing operators with application to a functional integral equation, Demonstr. Mat. 52 (2019), 166-182. https://doi.org/10.1515/dema-2019-0012 es_ES
dc.description.references N. Saleem, H. Ahmad, H. Aydi and Y. U. Gaba, On some coincidence best proximity point results, J. Math. 2021 (2021), 1-19. https://doi.org/10.1155/2021/8005469 es_ES
dc.description.references N. Saleem, M. Abbas, B. Bin-Mohsin and S. Radenovic, Pata type best proximity point results in metric spaces, Miskolc Math. Notes 21 (2020), 367-386. https://doi.org/10.18514/MMN.2020.2764 es_ES
dc.description.references N. Saleem, M. Abbas and K. Sohail, Approximate fixed point results for (α-η)-type and (β-ψ)-type fuzzy contractive mappings in b-fuzzy metric spaces, Malaysian J. Math. Sci. 15 (2019), 367-386. es_ES
dc.description.references B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 19 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem