- -

Fredholm theory for demicompact linear relations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fredholm theory for demicompact linear relations

Mostrar el registro completo del ítem

Ammar, A.; Fakhfakh, S.; Jeribi, A. (2022). Fredholm theory for demicompact linear relations. Applied General Topology. 23(2):425-436. https://doi.org/10.4995/agt.2022.16940

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187141

Ficheros en el ítem

Metadatos del ítem

Título: Fredholm theory for demicompact linear relations
Autor: Ammar, Aymen Fakhfakh, Slim Jeribi, Aref
Fecha difusión:
Resumen:
[EN] We first attempt to determine conditions on a linear relation T such that µT becomes a demicompact linear relation for each µ ∈ [0, 1) (see Theorems 2.4 and 2.5). Second, we display some results on Fredholm and ...[+]
Palabras clave: Demicompact linear relations , Fredholm theory , Block matrix
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.16940
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.16940
Tipo: Artículo

References

F. Abdmouleh, T. Álvarez, A. Ammar and A. Jeribi, Spectral mapping theorem for Rakocević and Schmoeger essential spectra of a multivalued linear operator, Mediterr. J. Math. 12, no. 3 (2015), 1019-1031. https://doi.org/10.1007/s00009-014-0437-7

A. Ammar, A characterization of some subsets of essential spectra of a multivalued linear operator, Complex Anal. Oper. Theory 11, no. 1 (2017), 175-196. https://doi.org/10.1007/s11785-016-0591-y

A. Ammar, Some results on semi-Fredholm perturbations of multivalued linear operators, Linear Multilinear Algebra 66, no. 7 (2018), 1311-1332. https://doi.org/10.1080/03081087.2017.1351517 [+]
F. Abdmouleh, T. Álvarez, A. Ammar and A. Jeribi, Spectral mapping theorem for Rakocević and Schmoeger essential spectra of a multivalued linear operator, Mediterr. J. Math. 12, no. 3 (2015), 1019-1031. https://doi.org/10.1007/s00009-014-0437-7

A. Ammar, A characterization of some subsets of essential spectra of a multivalued linear operator, Complex Anal. Oper. Theory 11, no. 1 (2017), 175-196. https://doi.org/10.1007/s11785-016-0591-y

A. Ammar, Some results on semi-Fredholm perturbations of multivalued linear operators, Linear Multilinear Algebra 66, no. 7 (2018), 1311-1332. https://doi.org/10.1080/03081087.2017.1351517

A. Ammar, H. Daoud and A. Jeribi, Demicompact and K-D-setcontractive multivalued linear operators, Mediterr. J. Math. 15, no. 2 (2018): 41. https://doi.org/10.1007/s00009-018-1078-z

A. Ammar, S. Fakhfakh and A. Jeribi, Stability of the essential spectrum of the diagonally and off-diagonally dominant block matrix linear relations, J. Pseudo-Differ. Oper. Appl. 7, no. 4 (2016), 493-509. https://doi.org/10.1007/s11868-016-0154-z

W. Chaker, A. Jeribi and B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr. 288, no. 13 (2015), 1476-1486. https://doi.org/10.1002/mana.201200007

R. W. Cross, Multivalued Linear Operators, Marcel Dekker, (1998).

A. Jeribi, Spectral Theory and Applications of Linear Operator and Block Operator Matrices, Springer-Verlag, New York, 2015. https://doi.org/10.1007/978-3-319-17566-9

K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. https://doi.org/10.4064/fm-15-1-301-309

W. V. Petryshyn, Remarks on condensing and k-set-contractive mappings, J. Math. Appl. 39 (1972),3 717-741. https://doi.org/10.1016/0022-247X(72)90194-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem