Mostrar el registro sencillo del ítem
dc.contributor.author | Ammar, Aymen | es_ES |
dc.contributor.author | Fakhfakh, Slim | es_ES |
dc.contributor.author | Jeribi, Aref | es_ES |
dc.date.accessioned | 2022-10-06T09:54:02Z | |
dc.date.available | 2022-10-06T09:54:02Z | |
dc.date.issued | 2022-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/187141 | |
dc.description.abstract | [EN] We first attempt to determine conditions on a linear relation T such that µT becomes a demicompact linear relation for each µ ∈ [0, 1) (see Theorems 2.4 and 2.5). Second, we display some results on Fredholm and upper semi-Fredholm linear relations involving a demicompact one (see Theorems 3.1 and 3.2). Finally, we provide some results in which a block matrix of linear relations becomes a demicompact block matrix of linear relations (see Theorems 4.2 and 4.3). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Demicompact linear relations | es_ES |
dc.subject | Fredholm theory | es_ES |
dc.subject | Block matrix | es_ES |
dc.title | Fredholm theory for demicompact linear relations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.16940 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ammar, A.; Fakhfakh, S.; Jeribi, A. (2022). Fredholm theory for demicompact linear relations. Applied General Topology. 23(2):425-436. https://doi.org/10.4995/agt.2022.16940 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.16940 | es_ES |
dc.description.upvformatpinicio | 425 | es_ES |
dc.description.upvformatpfin | 436 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\16940 | es_ES |
dc.description.references | F. Abdmouleh, T. Álvarez, A. Ammar and A. Jeribi, Spectral mapping theorem for Rakocević and Schmoeger essential spectra of a multivalued linear operator, Mediterr. J. Math. 12, no. 3 (2015), 1019-1031. https://doi.org/10.1007/s00009-014-0437-7 | es_ES |
dc.description.references | A. Ammar, A characterization of some subsets of essential spectra of a multivalued linear operator, Complex Anal. Oper. Theory 11, no. 1 (2017), 175-196. https://doi.org/10.1007/s11785-016-0591-y | es_ES |
dc.description.references | A. Ammar, Some results on semi-Fredholm perturbations of multivalued linear operators, Linear Multilinear Algebra 66, no. 7 (2018), 1311-1332. https://doi.org/10.1080/03081087.2017.1351517 | es_ES |
dc.description.references | A. Ammar, H. Daoud and A. Jeribi, Demicompact and K-D-setcontractive multivalued linear operators, Mediterr. J. Math. 15, no. 2 (2018): 41. https://doi.org/10.1007/s00009-018-1078-z | es_ES |
dc.description.references | A. Ammar, S. Fakhfakh and A. Jeribi, Stability of the essential spectrum of the diagonally and off-diagonally dominant block matrix linear relations, J. Pseudo-Differ. Oper. Appl. 7, no. 4 (2016), 493-509. https://doi.org/10.1007/s11868-016-0154-z | es_ES |
dc.description.references | W. Chaker, A. Jeribi and B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr. 288, no. 13 (2015), 1476-1486. https://doi.org/10.1002/mana.201200007 | es_ES |
dc.description.references | R. W. Cross, Multivalued Linear Operators, Marcel Dekker, (1998). | es_ES |
dc.description.references | A. Jeribi, Spectral Theory and Applications of Linear Operator and Block Operator Matrices, Springer-Verlag, New York, 2015. https://doi.org/10.1007/978-3-319-17566-9 | es_ES |
dc.description.references | K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. https://doi.org/10.4064/fm-15-1-301-309 | es_ES |
dc.description.references | W. V. Petryshyn, Remarks on condensing and k-set-contractive mappings, J. Math. Appl. 39 (1972),3 717-741. https://doi.org/10.1016/0022-247X(72)90194-1 | es_ES |