- -

Learning from limited labelled data: contributions to weak, few-shot, and unsupervised learning

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Learning from limited labelled data: contributions to weak, few-shot, and unsupervised learning

Show full item record

Silva Rodríguez, JJ. (2022). Learning from limited labelled data: contributions to weak, few-shot, and unsupervised learning [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/190633

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190633

Files in this item

Item Metadata

Title: Learning from limited labelled data: contributions to weak, few-shot, and unsupervised learning
Author: Silva Rodríguez, Julio José
Director(s): Insa Franco, Ricardo Naranjo Ornedo, Valeriana Salvador Zuriaga, Pablo
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Read date / Event date:
2022-11-04
Issued date:
Abstract:
[ES] En la última década, el aprendizaje profundo (DL) se ha convertido en la principal herramienta para las tareas de visión por ordenador (CV). Bajo el paradigma de aprendizaje supervisado, y gracias a la recopilación ...[+]


[CA] En l'última dècada, l'aprenentatge profund (DL) s'ha convertit en la principal eina per a les tasques de visió per ordinador (CV). Sota el paradigma d'aprenentatge supervisat, i gràcies a la recopilació de grans ...[+]


[EN] In the last decade, deep learning (DL) has become the main tool for computer vision (CV) tasks. Under the standard supervised learnng paradigm, and thanks to the progressive collection of large datasets, DL has reached ...[+]
Subjects: Metaaprendizaje , Visión artificial , Aprendizaje de pocos datos , Aprendizaje profundo , Aprendizaje profundo debilmente supervisado , Detección de anomalías no supervisada , Computer vision , Meta learning , Few-shot learning , Deep learning , Unsupervised anomaly detection , Weakly supervised deep learning
Copyrigths: Reserva de todos los derechos
DOI: 10.4995/Thesis/10251/190633
Publisher:
Universitat Politècnica de València
Project ID:
info:eu-repo/grantAgreement/AEI//PRE2018-083443/ES/AYUDA PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES
Description: Tesis por compendio
Thanks:
The work of Julio Silva Rodríguez to carry out this research and to elaborate this dissertation has been supported by the Spanish Government under the FPI Grant PRE2018-083443.
Type: Tesis doctoral

recommendations

 

This item appears in the following Collection(s)

Show full item record