- -

Modern Integrated Development Environment (IDEs)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modern Integrated Development Environment (IDEs)

Mostrar el registro completo del ítem

Alizadehsani, Z.; Goyenechea Gomez, E.; Ghaemi, H.; Rodríguez González, S.; Jordán, J.; Fernández, A.; Pérez-Lancho, B. (2021). Modern Integrated Development Environment (IDEs). Springer. 274-288. https://doi.org/10.1007/978-3-030-78901-5_24

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191067

Ficheros en el ítem

Metadatos del ítem

Título: Modern Integrated Development Environment (IDEs)
Autor: Alizadehsani, Zakieh Goyenechea Gomez, Enrique Ghaemi, Hadi Rodríguez González, Sara Jordán, Jaume Fernández, Alberto Pérez-Lancho, Belén
Fecha difusión:
Resumen:
[EN] One of the important objectives of smart cities is to provide electronic services to citizens, however, this requires the building of related software which is a time-consuming process. In this regard, smart city ...[+]
Palabras clave: Integrated Development Environment (IDE) , Online IDEs , Software development , Artificial intelligence (AI) , Theia
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-78900-8
Fuente:
Sustainable Smart Cities and Territories. Lecture Notes in Networks and Systems (LNNS, volume 253). (issn: 2367-3370 )
DOI: 10.1007/978-3-030-78901-5_24
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-030-78901-5_24
Título del congreso: Sustainable Smart Cities and Territories International Conference (SSCt 2021)
Lugar del congreso: Doha, Qatar
Fecha congreso: Abril 27-29,2021
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C32/ES/MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/
Agradecimientos:
Supported by the project "Intelligent and sustainable mobility supported by multi-agent systems and edge computing (InEDGEMobility): Towards Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security", ...[+]
Tipo: Comunicación en congreso Artículo Capítulo de libro

References

Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado, J.M.: Can building “artificially intelligent cities’’ safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors 20(10), 2988 (2020)

Chamoso, P., González-Briones, A., Prieta, F.D.L., Venyagamoorthy, G.K., Corchado, J.M.: Smart city as a distributed platform: toward a system for citizen-oriented management. Comput. Commun. 152, 323–332 (2020)

Gasparic, M., Murphy, G.C., Ricci, F.: A context model for IDE-based recommendation systems. J. Syst. Softw. 128, 200–219 (2017) [+]
Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado, J.M.: Can building “artificially intelligent cities’’ safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors 20(10), 2988 (2020)

Chamoso, P., González-Briones, A., Prieta, F.D.L., Venyagamoorthy, G.K., Corchado, J.M.: Smart city as a distributed platform: toward a system for citizen-oriented management. Comput. Commun. 152, 323–332 (2020)

Gasparic, M., Murphy, G.C., Ricci, F.: A context model for IDE-based recommendation systems. J. Syst. Softw. 128, 200–219 (2017)

Theia, E.: Platform to develop Cloud & Desktop (2019). https://theia-ide.org/. Accessed 2020

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

Rustan, K., Leino, M., Wüstholz, V.: The Dafny integrated development environment. arxiv Preprint arxiv:1404.6602 (2014)

Cloud9, Cloud IDE. https://aws.amazon.com/cloud9/. Accessed 2021

Codeanywhere, Cloud IDE. https://codeanywhere.com/. Accessed 2021

Eclipse Che, Eclipse next-generation IDE. https://www.eclipse.org/che/. Accessed 2021

Omori, T., Hayashi, S., Maruyama, K.: A survey on methods of recording fine-grained operations on integrated development environments and their applications. Comput. Softw. 32(1), 60–80 (2015)

Aho, T., et al.: Designing ide as a service. Commun. Cloud Softw. 1(1) (2011)

Barenkamp, M., Rebstadt, J., Thomas, O.: Applications of AI in classical software engineering. AI Perspect. 2(1), 1–15 (2020)

Corchado, J.M., et al.: Deepint.net: a rapid deployment platform for smart territories. Sensors 21(1), 236 (2021)

Arora, P., Dixit, A.: Analysis of cloud IDEs for software development. Int. J. Eng. Res. General Sci. 4(4) (2016)

Applis, L.: Theoretical evaluation of the potential advantages of cloud ides for research and didactics. In: SKILL 2019-Studierendenkonferenz Informatik (2019)

Lin, Z.-Q., et al.: Intelligent development environment and software knowledge graph. J. Comput. Sci. Technol. 32(2), 242–249 (2017)

Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning for big code and naturalness. ACM Comput. Surv. (CSUR) 51(4), 1–37 (2018)

Wood, A., Rodeghero, P., Armaly, A., McMillan, C.: Detecting speech act types in developer question/answer conversations during bug repair. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 491–502 (2018)

Cooper, K., Torczon, L.: Engineering a Compiler. Elsevier, Amsterdam (2011)

Wang, Z., O’Boyle, M.: Machine learning in compiler optimization. Proc. IEEE 106(11), 1879–1901 (2018)

Chen, T., et al.: $$\{$$TVM$$\}$$: an automated end-to-end optimizing compiler for deep learning. In: 13th $$\{$$USENIX$$\}$$ Symposium on Operating Systems Design and Implementation ($$\{$$OSDI$$\}$$ 2018), pp. 578–594 (2018)

Nguyen, A.T., et al.: API code recommendation using statistical learning from fine-grained changes. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 511–522 (2016)

Loaiza, F.L., Wheeler, D.A., Birdwell, J.D.: A partial survey on AI technologies applicable to automated source code generation. Technical report, Institute for Defense Analyses Alexandria United States (2019)

TabNine, Autocompletion with deep learning 2019. https://www.kite.com/. Accessed 2020

Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE Trans. Software Eng. 45(1), 34–67 (2017)

Martinez, M., Monperrus, M.: Astor: exploring the design space of generate-and-validate program repair beyond GenProg. J. Syst. Softw. 151, 65–80 (2019)

Hata, H., Shihab, E., Neubig, G.: Learning to generate corrective patches using neural machine translation. arXiv preprint arXiv:1812.07170 (2018)

Chen, Z., Kommrusch, S.J., Tufano, M., Pouchet, L.-N., Poshyvanyk, D., Monperrus, M.: SEQUENCER: sequence-to-sequence learning for end-to-end program repair. IEEE Trans. Softw. Eng. (2019)

Gu, X., Zhang, H., Kim, S.: Deep code search. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 933–944. IEEE (2018)

Cambronero, J., Li, H., Kim, S., Sen, K., Chandra, S.: When deep learning met code search. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 964–974 (2019)

Portolan, M.: Automated testing flow: the present and the future. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2952–2963 (2019)

Godefroid, P., Singh, R., Peleg, H.: Machine learning for input fuzzing. US Patent App. 15/638,938, 4 October 2018

Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery. Pearson Education (2007)

Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In: Proceedings of NDSS (2008)

Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: fixing common C language errors by deep learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

Casado-Vara, R., Rey, A.M.-d., Affes, S., Prieto, J., Corchado, J.M. : IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)

Coronado, E., Mastrogiovanni, F., Indurkhya, B., Venture, G.: Visual programming environments for end-user development of intelligent and social robots, a systematic review. J. Comput. Lang. 58, 100970 (2020)

Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

Beltramelli, T.: pix2code: generating code from a graphical user interface screenshot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 1–6 (2018)

Pang, X., Zhou, Y., Li, P., Lin, W., Wu, W., Wang, J.Z.: A novel syntax-aware automatic graphics code generation with attention-based deep neural network. J. Netw. Comput. Appl. 161, 102636 (2020)

JetBrains, High-speed coding with Custom Live Templates. https://www.jetbrains.com/help/idea/using-live-templates.html. Accessed 2020

Murphy-Hill, E.: Continuous social screencasting to facilitate software tool discovery. In: 2012 34th International Conference on Software Engineering (ICSE), pp. 1317–1320. IEEE (2012)

Gasparic, M., Janes, A., Ricci, F., Murphy, G.C., Gurbanov, T.: A graphical user interface for presenting integrated development environment command recommendations: design, evaluation, and implementation. Inf. Softw. Technol. 92, 236–255 (2017)

Gasparic, M., Gurbanov, T., Ricci, F.: Improving integrated development environment commands knowledge with recommender systems. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering Education and Training, pp. 88–97 (2018)

LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via a graph neural network. In: Proceedings of the 28th International Conference on Program Comprehension, ICPC 2020, pp. 184–195. Association for Computing Machinery, New York (2020)

Oda, Y., et al.: Learning to generate pseudo-code from source code using statistical machine translation (t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 574–584. IEEE (2015)

Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2073–2083 (2016)

Bedia, M.G., Rodríguez, J.M.C., et al.: A planning strategy based on variational calculus for deliberative agents (2002)

Joshi, P., Bein, D.: Audible code, a voice-enabled programming extension of visual studio code. In: Latifi, S. (eds.) 17th International Conference on Information Technology-New Generations (ITNG 2020). AISC, vol. 1134, pp. 335–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43020-7_44

Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2020

Xu, F.F., Vasilescu, B., Neubig, G.: In-ide code generation from natural language: promise and challenges. arXiv preprint arXiv:2101.11149 (2021)

Wong, E., Yang, J., Tan, L.: Autocomment: mining question and answer sites for automatic comment generation. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 562–567. IEEE (2013)

Xing, H., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation with hybrid lexical and syntactical information. Empir. Softw. Eng. 25(3), 2179–2217 (2020)

Sidhanth, N., Sanjeev, S., Swettha, S., Srividya, R.: A next generation ide through multi tenant approach. Int. J. Inf. Electron. Eng. 4(1), 27 (2014)

Shi, S., Li, Q., Le, W., Xue, W., Zhang, Y., Cai, Y.: Intelligent workspace. US Patent 9,026,921, 5 May 2015

Eclipse Foundation (2020). https://ecdtools.eclipse.org/. Accessed 2021

Saini, R., Bali, S., Mussbacher, G.: Towards web collaborative modelling for the user requirements notation using Eclipse Che and Theia IDE. In: 2019 IEEE/ACM 11th International Workshop on Modelling in Software Engineering (MiSE), pp. 15–18. IEEE (2019)

Kahlert, T., Giza, K.: Visual studio code tips & tricks, vol. 1. Microsoft Deutschland GmbH (2016)

Bierman, G., Abadi, M., Torgersen, M.: Understanding typescript. In: Jones, R. (eds.) ECOOP 2014. LNCS, vol. 8586, pp. 257–281. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_11

Inversify, lightweight inversion of control (IoC) container for TypeScript and JavaScript apps (2018). https://github.com/inversify/InversifyJS. Accessed 2021

langserver, Language Server protocol. https://langserver.org/. Accessed 2020

Bünder, H.: Decoupling language and editor-the impact of the language server protocol on textual domain-specific languages. In: MODELSWARD, pp. 129–140 (2019)

Microsoft. VS Marketplace, Extensions for the Visual Studio products. https://marketplace.visualstudio.com/. Accessed 2021

Kite, AI powered code completions (2019). https://www.kite.com/. Accessed 2020

Kite visualstudio. https://marketplace.visualstudio.com. Accessed 2021

Flutter, Dart-Code. https://marketplace.visualstudio.com/items?itemName=Dart-Code.flutter. Accessed 2021

deepl, AI powered code completions (2019). https://www.deepl.com/en/docs-api/. Accessed 2020

VSearch code. https://marketplace.visualstudio.com/items?itemName=mario-0.VSearch102. Accessed 2021

Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem