- -

Modern Integrated Development Environment (IDEs)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modern Integrated Development Environment (IDEs)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alizadehsani, Zakieh es_ES
dc.contributor.author Goyenechea Gomez, Enrique es_ES
dc.contributor.author Ghaemi, Hadi es_ES
dc.contributor.author Rodríguez González, Sara es_ES
dc.contributor.author Jordán, Jaume es_ES
dc.contributor.author Fernández, Alberto es_ES
dc.contributor.author Pérez-Lancho, Belén es_ES
dc.date.accessioned 2023-01-09T07:38:26Z
dc.date.available 2023-01-09T07:38:26Z
dc.date.issued 2021-04-29 es_ES
dc.identifier.isbn 978-3-030-78900-8 es_ES
dc.identifier.issn 2367-3370 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191067
dc.description.abstract [EN] One of the important objectives of smart cities is to provide electronic services to citizens, however, this requires the building of related software which is a time-consuming process. In this regard, smart city infrastructures require development tools that can help accelerate and facilitate software development (mobile, IoT, and web applications). Integrated Development Environments (IDEs) are well-known tools that have brought together the features of various tools within one package. Modern IDEs include the advantages of Artificial Intelligence (AI) and Cloud Computing. These technologies can help the developer overcome the complexities associated with multi-platform software products. This paper has explored AI techniques that are applied in IDEs. To this end, the Eclipse Theia (cloud-based IDE) and its AI-based extensions are explored as a case study. The findings show that recommender system models, language modeling, deep learning models, code mining, and attention mechanisms are used frequently to facilitate programming Furthermore, some researches have used NLP techniques and AI-based virtual assistance to promote the interaction between developers and projects. es_ES
dc.description.sponsorship Supported by the project "Intelligent and sustainable mobility supported by multi-agent systems and edge computing (InEDGEMobility): Towards Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security", Reference: RTI2018-095390-B-C32, financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), the State Research Agency (AEI) and the European Regional Development Fund (FEDER). es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Sustainable Smart Cities and Territories. Lecture Notes in Networks and Systems (LNNS, volume 253) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Integrated Development Environment (IDE) es_ES
dc.subject Online IDEs es_ES
dc.subject Software development es_ES
dc.subject Artificial intelligence (AI) es_ES
dc.subject Theia es_ES
dc.title Modern Integrated Development Environment (IDEs) es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-78901-5_24 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C32/ES/MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Alizadehsani, Z.; Goyenechea Gomez, E.; Ghaemi, H.; Rodríguez González, S.; Jordán, J.; Fernández, A.; Pérez-Lancho, B. (2021). Modern Integrated Development Environment (IDEs). Springer. 274-288. https://doi.org/10.1007/978-3-030-78901-5_24 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Sustainable Smart Cities and Territories International Conference (SSCt 2021) es_ES
dc.relation.conferencedate Abril 27-29,2021 es_ES
dc.relation.conferenceplace Doha, Qatar es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-78901-5_24 es_ES
dc.description.upvformatpinicio 274 es_ES
dc.description.upvformatpfin 288 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\450333 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado, J.M.: Can building “artificially intelligent cities’’ safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors 20(10), 2988 (2020) es_ES
dc.description.references Chamoso, P., González-Briones, A., Prieta, F.D.L., Venyagamoorthy, G.K., Corchado, J.M.: Smart city as a distributed platform: toward a system for citizen-oriented management. Comput. Commun. 152, 323–332 (2020) es_ES
dc.description.references Gasparic, M., Murphy, G.C., Ricci, F.: A context model for IDE-based recommendation systems. J. Syst. Softw. 128, 200–219 (2017) es_ES
dc.description.references Theia, E.: Platform to develop Cloud & Desktop (2019). https://theia-ide.org/. Accessed 2020 es_ES
dc.description.references Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003) es_ES
dc.description.references Rustan, K., Leino, M., Wüstholz, V.: The Dafny integrated development environment. arxiv Preprint arxiv:1404.6602 (2014) es_ES
dc.description.references Cloud9, Cloud IDE. https://aws.amazon.com/cloud9/. Accessed 2021 es_ES
dc.description.references Codeanywhere, Cloud IDE. https://codeanywhere.com/. Accessed 2021 es_ES
dc.description.references Eclipse Che, Eclipse next-generation IDE. https://www.eclipse.org/che/. Accessed 2021 es_ES
dc.description.references Omori, T., Hayashi, S., Maruyama, K.: A survey on methods of recording fine-grained operations on integrated development environments and their applications. Comput. Softw. 32(1), 60–80 (2015) es_ES
dc.description.references Aho, T., et al.: Designing ide as a service. Commun. Cloud Softw. 1(1) (2011) es_ES
dc.description.references Barenkamp, M., Rebstadt, J., Thomas, O.: Applications of AI in classical software engineering. AI Perspect. 2(1), 1–15 (2020) es_ES
dc.description.references Corchado, J.M., et al.: Deepint.net: a rapid deployment platform for smart territories. Sensors 21(1), 236 (2021) es_ES
dc.description.references Arora, P., Dixit, A.: Analysis of cloud IDEs for software development. Int. J. Eng. Res. General Sci. 4(4) (2016) es_ES
dc.description.references Applis, L.: Theoretical evaluation of the potential advantages of cloud ides for research and didactics. In: SKILL 2019-Studierendenkonferenz Informatik (2019) es_ES
dc.description.references Lin, Z.-Q., et al.: Intelligent development environment and software knowledge graph. J. Comput. Sci. Technol. 32(2), 242–249 (2017) es_ES
dc.description.references Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning for big code and naturalness. ACM Comput. Surv. (CSUR) 51(4), 1–37 (2018) es_ES
dc.description.references Wood, A., Rodeghero, P., Armaly, A., McMillan, C.: Detecting speech act types in developer question/answer conversations during bug repair. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 491–502 (2018) es_ES
dc.description.references Cooper, K., Torczon, L.: Engineering a Compiler. Elsevier, Amsterdam (2011) es_ES
dc.description.references Wang, Z., O’Boyle, M.: Machine learning in compiler optimization. Proc. IEEE 106(11), 1879–1901 (2018) es_ES
dc.description.references Chen, T., et al.: $$\{$$TVM$$\}$$: an automated end-to-end optimizing compiler for deep learning. In: 13th $$\{$$USENIX$$\}$$ Symposium on Operating Systems Design and Implementation ($$\{$$OSDI$$\}$$ 2018), pp. 578–594 (2018) es_ES
dc.description.references Nguyen, A.T., et al.: API code recommendation using statistical learning from fine-grained changes. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 511–522 (2016) es_ES
dc.description.references Loaiza, F.L., Wheeler, D.A., Birdwell, J.D.: A partial survey on AI technologies applicable to automated source code generation. Technical report, Institute for Defense Analyses Alexandria United States (2019) es_ES
dc.description.references TabNine, Autocompletion with deep learning 2019. https://www.kite.com/. Accessed 2020 es_ES
dc.description.references Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE Trans. Software Eng. 45(1), 34–67 (2017) es_ES
dc.description.references Martinez, M., Monperrus, M.: Astor: exploring the design space of generate-and-validate program repair beyond GenProg. J. Syst. Softw. 151, 65–80 (2019) es_ES
dc.description.references Hata, H., Shihab, E., Neubig, G.: Learning to generate corrective patches using neural machine translation. arXiv preprint arXiv:1812.07170 (2018) es_ES
dc.description.references Chen, Z., Kommrusch, S.J., Tufano, M., Pouchet, L.-N., Poshyvanyk, D., Monperrus, M.: SEQUENCER: sequence-to-sequence learning for end-to-end program repair. IEEE Trans. Softw. Eng. (2019) es_ES
dc.description.references Gu, X., Zhang, H., Kim, S.: Deep code search. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 933–944. IEEE (2018) es_ES
dc.description.references Cambronero, J., Li, H., Kim, S., Sen, K., Chandra, S.: When deep learning met code search. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 964–974 (2019) es_ES
dc.description.references Portolan, M.: Automated testing flow: the present and the future. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2952–2963 (2019) es_ES
dc.description.references Godefroid, P., Singh, R., Peleg, H.: Machine learning for input fuzzing. US Patent App. 15/638,938, 4 October 2018 es_ES
dc.description.references Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery. Pearson Education (2007) es_ES
dc.description.references Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In: Proceedings of NDSS (2008) es_ES
dc.description.references Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: fixing common C language errors by deep learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017) es_ES
dc.description.references Casado-Vara, R., Rey, A.M.-d., Affes, S., Prieto, J., Corchado, J.M. : IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020) es_ES
dc.description.references Coronado, E., Mastrogiovanni, F., Indurkhya, B., Venture, G.: Visual programming environments for end-user development of intelligent and social robots, a systematic review. J. Comput. Lang. 58, 100970 (2020) es_ES
dc.description.references Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015) es_ES
dc.description.references Beltramelli, T.: pix2code: generating code from a graphical user interface screenshot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 1–6 (2018) es_ES
dc.description.references Pang, X., Zhou, Y., Li, P., Lin, W., Wu, W., Wang, J.Z.: A novel syntax-aware automatic graphics code generation with attention-based deep neural network. J. Netw. Comput. Appl. 161, 102636 (2020) es_ES
dc.description.references JetBrains, High-speed coding with Custom Live Templates. https://www.jetbrains.com/help/idea/using-live-templates.html. Accessed 2020 es_ES
dc.description.references Murphy-Hill, E.: Continuous social screencasting to facilitate software tool discovery. In: 2012 34th International Conference on Software Engineering (ICSE), pp. 1317–1320. IEEE (2012) es_ES
dc.description.references Gasparic, M., Janes, A., Ricci, F., Murphy, G.C., Gurbanov, T.: A graphical user interface for presenting integrated development environment command recommendations: design, evaluation, and implementation. Inf. Softw. Technol. 92, 236–255 (2017) es_ES
dc.description.references Gasparic, M., Gurbanov, T., Ricci, F.: Improving integrated development environment commands knowledge with recommender systems. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering Education and Training, pp. 88–97 (2018) es_ES
dc.description.references LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via a graph neural network. In: Proceedings of the 28th International Conference on Program Comprehension, ICPC 2020, pp. 184–195. Association for Computing Machinery, New York (2020) es_ES
dc.description.references Oda, Y., et al.: Learning to generate pseudo-code from source code using statistical machine translation (t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 574–584. IEEE (2015) es_ES
dc.description.references Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2073–2083 (2016) es_ES
dc.description.references Bedia, M.G., Rodríguez, J.M.C., et al.: A planning strategy based on variational calculus for deliberative agents (2002) es_ES
dc.description.references Joshi, P., Bein, D.: Audible code, a voice-enabled programming extension of visual studio code. In: Latifi, S. (eds.) 17th International Conference on Information Technology-New Generations (ITNG 2020). AISC, vol. 1134, pp. 335–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43020-7_44 es_ES
dc.description.references Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2020 es_ES
dc.description.references Xu, F.F., Vasilescu, B., Neubig, G.: In-ide code generation from natural language: promise and challenges. arXiv preprint arXiv:2101.11149 (2021) es_ES
dc.description.references Wong, E., Yang, J., Tan, L.: Autocomment: mining question and answer sites for automatic comment generation. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 562–567. IEEE (2013) es_ES
dc.description.references Xing, H., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation with hybrid lexical and syntactical information. Empir. Softw. Eng. 25(3), 2179–2217 (2020) es_ES
dc.description.references Sidhanth, N., Sanjeev, S., Swettha, S., Srividya, R.: A next generation ide through multi tenant approach. Int. J. Inf. Electron. Eng. 4(1), 27 (2014) es_ES
dc.description.references Shi, S., Li, Q., Le, W., Xue, W., Zhang, Y., Cai, Y.: Intelligent workspace. US Patent 9,026,921, 5 May 2015 es_ES
dc.description.references Eclipse Foundation (2020). https://ecdtools.eclipse.org/. Accessed 2021 es_ES
dc.description.references Saini, R., Bali, S., Mussbacher, G.: Towards web collaborative modelling for the user requirements notation using Eclipse Che and Theia IDE. In: 2019 IEEE/ACM 11th International Workshop on Modelling in Software Engineering (MiSE), pp. 15–18. IEEE (2019) es_ES
dc.description.references Kahlert, T., Giza, K.: Visual studio code tips & tricks, vol. 1. Microsoft Deutschland GmbH (2016) es_ES
dc.description.references Bierman, G., Abadi, M., Torgersen, M.: Understanding typescript. In: Jones, R. (eds.) ECOOP 2014. LNCS, vol. 8586, pp. 257–281. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_11 es_ES
dc.description.references Inversify, lightweight inversion of control (IoC) container for TypeScript and JavaScript apps (2018). https://github.com/inversify/InversifyJS. Accessed 2021 es_ES
dc.description.references langserver, Language Server protocol. https://langserver.org/. Accessed 2020 es_ES
dc.description.references Bünder, H.: Decoupling language and editor-the impact of the language server protocol on textual domain-specific languages. In: MODELSWARD, pp. 129–140 (2019) es_ES
dc.description.references Microsoft. VS Marketplace, Extensions for the Visual Studio products. https://marketplace.visualstudio.com/. Accessed 2021 es_ES
dc.description.references Kite, AI powered code completions (2019). https://www.kite.com/. Accessed 2020 es_ES
dc.description.references Kite visualstudio. https://marketplace.visualstudio.com. Accessed 2021 es_ES
dc.description.references Flutter, Dart-Code. https://marketplace.visualstudio.com/items?itemName=Dart-Code.flutter. Accessed 2021 es_ES
dc.description.references deepl, AI powered code completions (2019). https://www.deepl.com/en/docs-api/. Accessed 2020 es_ES
dc.description.references VSearch code. https://marketplace.visualstudio.com/items?itemName=mario-0.VSearch102. Accessed 2021 es_ES
dc.description.references Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem