Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado, J.M.: Can building “artificially intelligent cities’’ safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors 20(10), 2988 (2020)
Chamoso, P., González-Briones, A., Prieta, F.D.L., Venyagamoorthy, G.K., Corchado, J.M.: Smart city as a distributed platform: toward a system for citizen-oriented management. Comput. Commun. 152, 323–332 (2020)
Gasparic, M., Murphy, G.C., Ricci, F.: A context model for IDE-based recommendation systems. J. Syst. Softw. 128, 200–219 (2017)
[+]
Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado, J.M.: Can building “artificially intelligent cities’’ safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors 20(10), 2988 (2020)
Chamoso, P., González-Briones, A., Prieta, F.D.L., Venyagamoorthy, G.K., Corchado, J.M.: Smart city as a distributed platform: toward a system for citizen-oriented management. Comput. Commun. 152, 323–332 (2020)
Gasparic, M., Murphy, G.C., Ricci, F.: A context model for IDE-based recommendation systems. J. Syst. Softw. 128, 200–219 (2017)
Theia, E.: Platform to develop Cloud & Desktop (2019). https://theia-ide.org/. Accessed 2020
Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)
Rustan, K., Leino, M., Wüstholz, V.: The Dafny integrated development environment. arxiv Preprint arxiv:1404.6602 (2014)
Cloud9, Cloud IDE. https://aws.amazon.com/cloud9/. Accessed 2021
Codeanywhere, Cloud IDE. https://codeanywhere.com/. Accessed 2021
Eclipse Che, Eclipse next-generation IDE. https://www.eclipse.org/che/. Accessed 2021
Omori, T., Hayashi, S., Maruyama, K.: A survey on methods of recording fine-grained operations on integrated development environments and their applications. Comput. Softw. 32(1), 60–80 (2015)
Aho, T., et al.: Designing ide as a service. Commun. Cloud Softw. 1(1) (2011)
Barenkamp, M., Rebstadt, J., Thomas, O.: Applications of AI in classical software engineering. AI Perspect. 2(1), 1–15 (2020)
Corchado, J.M., et al.: Deepint.net: a rapid deployment platform for smart territories. Sensors 21(1), 236 (2021)
Arora, P., Dixit, A.: Analysis of cloud IDEs for software development. Int. J. Eng. Res. General Sci. 4(4) (2016)
Applis, L.: Theoretical evaluation of the potential advantages of cloud ides for research and didactics. In: SKILL 2019-Studierendenkonferenz Informatik (2019)
Lin, Z.-Q., et al.: Intelligent development environment and software knowledge graph. J. Comput. Sci. Technol. 32(2), 242–249 (2017)
Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning for big code and naturalness. ACM Comput. Surv. (CSUR) 51(4), 1–37 (2018)
Wood, A., Rodeghero, P., Armaly, A., McMillan, C.: Detecting speech act types in developer question/answer conversations during bug repair. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 491–502 (2018)
Cooper, K., Torczon, L.: Engineering a Compiler. Elsevier, Amsterdam (2011)
Wang, Z., O’Boyle, M.: Machine learning in compiler optimization. Proc. IEEE 106(11), 1879–1901 (2018)
Chen, T., et al.: $$\{$$TVM$$\}$$: an automated end-to-end optimizing compiler for deep learning. In: 13th $$\{$$USENIX$$\}$$ Symposium on Operating Systems Design and Implementation ($$\{$$OSDI$$\}$$ 2018), pp. 578–594 (2018)
Nguyen, A.T., et al.: API code recommendation using statistical learning from fine-grained changes. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 511–522 (2016)
Loaiza, F.L., Wheeler, D.A., Birdwell, J.D.: A partial survey on AI technologies applicable to automated source code generation. Technical report, Institute for Defense Analyses Alexandria United States (2019)
TabNine, Autocompletion with deep learning 2019. https://www.kite.com/. Accessed 2020
Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE Trans. Software Eng. 45(1), 34–67 (2017)
Martinez, M., Monperrus, M.: Astor: exploring the design space of generate-and-validate program repair beyond GenProg. J. Syst. Softw. 151, 65–80 (2019)
Hata, H., Shihab, E., Neubig, G.: Learning to generate corrective patches using neural machine translation. arXiv preprint arXiv:1812.07170 (2018)
Chen, Z., Kommrusch, S.J., Tufano, M., Pouchet, L.-N., Poshyvanyk, D., Monperrus, M.: SEQUENCER: sequence-to-sequence learning for end-to-end program repair. IEEE Trans. Softw. Eng. (2019)
Gu, X., Zhang, H., Kim, S.: Deep code search. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 933–944. IEEE (2018)
Cambronero, J., Li, H., Kim, S., Sen, K., Chandra, S.: When deep learning met code search. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 964–974 (2019)
Portolan, M.: Automated testing flow: the present and the future. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2952–2963 (2019)
Godefroid, P., Singh, R., Peleg, H.: Machine learning for input fuzzing. US Patent App. 15/638,938, 4 October 2018
Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery. Pearson Education (2007)
Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In: Proceedings of NDSS (2008)
Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: fixing common C language errors by deep learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)
Casado-Vara, R., Rey, A.M.-d., Affes, S., Prieto, J., Corchado, J.M. : IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)
Coronado, E., Mastrogiovanni, F., Indurkhya, B., Venture, G.: Visual programming environments for end-user development of intelligent and social robots, a systematic review. J. Comput. Lang. 58, 100970 (2020)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)
Beltramelli, T.: pix2code: generating code from a graphical user interface screenshot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 1–6 (2018)
Pang, X., Zhou, Y., Li, P., Lin, W., Wu, W., Wang, J.Z.: A novel syntax-aware automatic graphics code generation with attention-based deep neural network. J. Netw. Comput. Appl. 161, 102636 (2020)
JetBrains, High-speed coding with Custom Live Templates. https://www.jetbrains.com/help/idea/using-live-templates.html. Accessed 2020
Murphy-Hill, E.: Continuous social screencasting to facilitate software tool discovery. In: 2012 34th International Conference on Software Engineering (ICSE), pp. 1317–1320. IEEE (2012)
Gasparic, M., Janes, A., Ricci, F., Murphy, G.C., Gurbanov, T.: A graphical user interface for presenting integrated development environment command recommendations: design, evaluation, and implementation. Inf. Softw. Technol. 92, 236–255 (2017)
Gasparic, M., Gurbanov, T., Ricci, F.: Improving integrated development environment commands knowledge with recommender systems. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering Education and Training, pp. 88–97 (2018)
LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via a graph neural network. In: Proceedings of the 28th International Conference on Program Comprehension, ICPC 2020, pp. 184–195. Association for Computing Machinery, New York (2020)
Oda, Y., et al.: Learning to generate pseudo-code from source code using statistical machine translation (t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 574–584. IEEE (2015)
Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2073–2083 (2016)
Bedia, M.G., Rodríguez, J.M.C., et al.: A planning strategy based on variational calculus for deliberative agents (2002)
Joshi, P., Bein, D.: Audible code, a voice-enabled programming extension of visual studio code. In: Latifi, S. (eds.) 17th International Conference on Information Technology-New Generations (ITNG 2020). AISC, vol. 1134, pp. 335–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43020-7_44
Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2020
Xu, F.F., Vasilescu, B., Neubig, G.: In-ide code generation from natural language: promise and challenges. arXiv preprint arXiv:2101.11149 (2021)
Wong, E., Yang, J., Tan, L.: Autocomment: mining question and answer sites for automatic comment generation. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 562–567. IEEE (2013)
Xing, H., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation with hybrid lexical and syntactical information. Empir. Softw. Eng. 25(3), 2179–2217 (2020)
Sidhanth, N., Sanjeev, S., Swettha, S., Srividya, R.: A next generation ide through multi tenant approach. Int. J. Inf. Electron. Eng. 4(1), 27 (2014)
Shi, S., Li, Q., Le, W., Xue, W., Zhang, Y., Cai, Y.: Intelligent workspace. US Patent 9,026,921, 5 May 2015
Eclipse Foundation (2020). https://ecdtools.eclipse.org/. Accessed 2021
Saini, R., Bali, S., Mussbacher, G.: Towards web collaborative modelling for the user requirements notation using Eclipse Che and Theia IDE. In: 2019 IEEE/ACM 11th International Workshop on Modelling in Software Engineering (MiSE), pp. 15–18. IEEE (2019)
Kahlert, T., Giza, K.: Visual studio code tips & tricks, vol. 1. Microsoft Deutschland GmbH (2016)
Bierman, G., Abadi, M., Torgersen, M.: Understanding typescript. In: Jones, R. (eds.) ECOOP 2014. LNCS, vol. 8586, pp. 257–281. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_11
Inversify, lightweight inversion of control (IoC) container for TypeScript and JavaScript apps (2018). https://github.com/inversify/InversifyJS. Accessed 2021
langserver, Language Server protocol. https://langserver.org/. Accessed 2020
Bünder, H.: Decoupling language and editor-the impact of the language server protocol on textual domain-specific languages. In: MODELSWARD, pp. 129–140 (2019)
Microsoft. VS Marketplace, Extensions for the Visual Studio products. https://marketplace.visualstudio.com/. Accessed 2021
Kite, AI powered code completions (2019). https://www.kite.com/. Accessed 2020
Kite visualstudio. https://marketplace.visualstudio.com. Accessed 2021
Flutter, Dart-Code. https://marketplace.visualstudio.com/items?itemName=Dart-Code.flutter. Accessed 2021
deepl, AI powered code completions (2019). https://www.deepl.com/en/docs-api/. Accessed 2020
VSearch code. https://marketplace.visualstudio.com/items?itemName=mario-0.VSearch102. Accessed 2021
Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2021
[-]