Angeles, J. (2007). Trajectory Planning: Pick and Place Operations. En Fundamentals of Robotic Mechanical Systems (págs. 233-256). Montreal: Springer. https://doi.org/10.1007/978-3-319-01851-5
Aracil, R., Saltarén, R. J., Sabater, J. M., & Reinoso, Ó. (septiembre de 2010). Robots Paralelos: Máquinas con un Pasado para una Robótica del Futuro. Revista Iberoamericana de Automática e Informática industrial, v. 3, n. 1, p. 16-28. Recuperado el 22 de Noviembre de 2021, de https://polipapers.upv.es/index.php/RIAI/article/view/8105
Barreto, J. P. (2021). Exploiting the natural dynamics of parallel robots for energy-efficient pick-and-place tasks. RWTH Aachen University, Institute of Mechanism Theory, Machine Dynamics and Robotics (IGMR). Aachen: RWTH Aachen University. doi:https://doi.org/10.18154/RWTH-2021-05347
[+]
Angeles, J. (2007). Trajectory Planning: Pick and Place Operations. En Fundamentals of Robotic Mechanical Systems (págs. 233-256). Montreal: Springer. https://doi.org/10.1007/978-3-319-01851-5
Aracil, R., Saltarén, R. J., Sabater, J. M., & Reinoso, Ó. (septiembre de 2010). Robots Paralelos: Máquinas con un Pasado para una Robótica del Futuro. Revista Iberoamericana de Automática e Informática industrial, v. 3, n. 1, p. 16-28. Recuperado el 22 de Noviembre de 2021, de https://polipapers.upv.es/index.php/RIAI/article/view/8105
Barreto, J. P. (2021). Exploiting the natural dynamics of parallel robots for energy-efficient pick-and-place tasks. RWTH Aachen University, Institute of Mechanism Theory, Machine Dynamics and Robotics (IGMR). Aachen: RWTH Aachen University. doi:https://doi.org/10.18154/RWTH-2021-05347
Brochu, E., Cora, V. M., & de Freitas, N. (2010). A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. Cornell University, Computer Science. Machine Learning. Cornell University. Recuperado el 5 de Septiembre de 2021, de https://arxiv.org/abs/1012.2599
Carabin, G., Wehrle, E., & Vidoni, R. (2017). A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems. Robotics, 6(4), 39. https://doi.org/10.3390/robotics6040039
Dai, Y.-H. (2002). Convergence Properties of the BFGS Algorithm. SIAM Journal on Optimization, 13, 693-701. https://doi.org/10.1137/S1052623401383455
Dou, Z. (2015). Bayesian global optimization approach to the oil well placement problem with quantified uncertainties. Purdue University, Mechanical Engineering. Purdue University. Recuperado el 10 de Agosto de 2021, de https://docs.lib.purdue.edu/open_access_theses/530
Frazier, P. I. (2018). A Tutorial on Bayesian Optimization. Cornell University, Statistics. Machine Learning. Recuperado el 22 de Agosto de 2021, de https://arxiv.org/abs/1807.02811
He, T., Zhang, Y., Sun, F., & Shi, X. (2016). Immune optimization based multi-objective six-DOF trajectory planning forindustrial robot manipulators. 2016 12th World Congress on Intelligent Control and Automation (WCICA) (págs. 2945-2950). IEEE. https://doi.org/10.1109/WCICA.2016.7578610
International Federation of Robotics. (2020). Executive Summary World Robotics 2020 Industrial Robots. Recuperado el 11 de Marzo de 2021, de https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.pdf
International Federation of Robotics. (2021). Executive Summary World Robotics 2021 Industrial Robots. Recuperado el 10 de 11 de 2021, de https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2021.pdf
Lorenz, M., Paris, J., Schöler, F., Barreto, J. P., Mannheim, T., Hüsing, M., & Corves, B. (2017). Energy-Efficient Trajectory Planning for Robot Manipulators. ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 41st Mechanisms and Robotics Conference. Cleveland, Ohio: ASME. https://doi.org/10.1115/DETC2017-67198
MathWorks. (2021). fminunc.Recuperado el 13 de 7 de 2021, de https://www.mathworks.com/help/optim/ug/fminunc.html#but9rn9-5
Mora, J. P. (2021). Estudio del movimiento natural en escenarios de tareas pick and place en un robot paralelo. Universidad de los Andes, Ingeniería Mecánica. Bogotá: Universidad de los Andes. Recuperado el 22 de Noviembre de 2021, de http://hdl.handle.net/1992/52889
Mora, J., Barreto, J. P., & Rodriguez, C. F. (2022). Energy Optimization of a Parallel Robot in Pick and Place Tasks. Pucheta M., Cardona A., Preidikman S., Hecker R. (eds) Multibody Mechatronic Systems. MuSMe 2021. Mechanisms and Machine Science. 110. Springer, Cham. https://doi.org/10.1007/978-3-030-88751-3_20
Rai, A., Antonova, R., Song, S., Martin, W., Geyer, H., & Atkeson, C. (2018). Bayesian Optimization Using Domain Knowledge on the ATRIAS Biped. 2018 IEEE International Conference on Robotics and Automation (ICRA) (págs. 1771-1778). IEEE. https://doi.org/10.1109/ICRA.2018.8461237
Reiter, A., Gattringer, H., & Müller, A. (2017). Real-time computation of inexact minimum-energy trajectories using parametric sensitivities. Ferraresi C., Quaglia G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science. 49, págs. 174-182. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_20
Samper, J. (2021). Optimización Bayesiana del Consumo Energético de un Mecanismo de 5 Barras. Universidad de los Andes, Ingeniería Mecánica. Bogotá: Universidad de los Andes. Recuperado el 22 de Noviembre de 2021, de http://hdl.handle.net/1992/53169
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. Cornell University. Cornell University. Recuperado el 12 de Agosto de 2021, de https://arxiv.org/abs/1206.2944v2
SP Automation and Robotics. (2018). Pick and Place Automation / Robotic Material Handling. Recuperado el 10 de Junio de 2021, de https://sp-automation.co.uk/pick-place-application/
The European Business Review. (Septiembre de 2020). The role of industrial robots in global modern industries. Recuperado el 11 de Marzo de 2021, de https://www.europeanbusinessreview.com/the-role-of-industrial-robots-in-global-modern-industries/
[-]