Anderson, J., More, J., Puleston, P., 2019. Design and stability analysis of a super-twisting controller for a PS-FBC-based fuel cell module. Advanced Control for Applications 1. https://doi.org/10.1002/adc2.19
Bartolini, G., Ferrara, A., Levant, A., Usai, E., 1993. On second order sliding mode controllers, in: VSS, SM and Nonlinear Control., pp. 329-350. https://doi.org/10.1007/BFb0109984
Bartolini, G., Levant, A., Plestan, F., Taleb, M., Punta, E., 2013. Adaptation of sliding modes. IMA JMCI 30. https://doi.org/10.1093/imamci/dns019
[+]
Anderson, J., More, J., Puleston, P., 2019. Design and stability analysis of a super-twisting controller for a PS-FBC-based fuel cell module. Advanced Control for Applications 1. https://doi.org/10.1002/adc2.19
Bartolini, G., Ferrara, A., Levant, A., Usai, E., 1993. On second order sliding mode controllers, in: VSS, SM and Nonlinear Control., pp. 329-350. https://doi.org/10.1007/BFb0109984
Bartolini, G., Levant, A., Plestan, F., Taleb, M., Punta, E., 2013. Adaptation of sliding modes. IMA JMCI 30. https://doi.org/10.1093/imamci/dns019
Boiko, I., Fridman, L., Pisano, A., Usai, E., 2007. Performance analysis of second-order sliding-mode control systems with fast actuators. IEEE Transactions on Automatic Control 52, 1053-1059. https://doi.org/10.1109/TAC.2007.899090
Boubzizi, S., El Sied, M., Bester, J.E., Mabwe, A.M., 2018. Cascaded Adaptive Super Twisting controller for DC/DC converters in electrical vehicle applications, in: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2007-2014. https://doi.org/10.1109/IECON.2018.8591380
Derbeli, M., Barambones, O., Ramos-Hernanz, J.A., Sbita, L., 2019. Real-time implementation of a super twisting algorithm for pem fuel cell power system. Energies 12. https://doi.org/10.3390/en12091594
Edwards, C., Shtessel, Y., 2019. Enhanced continuous higher order sliding mode control with adaptation. Journal of the Franklin Institute 356, 4773-4784. https://doi.org/10.1016/j.jfranklin.2018.12.026
Fridman, L., Moreno, J., Bandyopadhyay, B., Kamal, S., Chalanga, A., 2015. Continuous Nested Algorithms : The Fifth Generation of Sliding Mode Controllers. Springer, Cham. volume 24. chapter 1. pp. 5,35. https://doi.org/10.1007/978-3-319-18290-2_2
Gonzalez, T., Moreno, J.A., Fridman, L., 2012. Variable Gain Super-Twisting Sliding Mode Control. IEEE TAC 57, 2100. https://doi.org/10.1109/TAC.2011.2179878
Hernández, D., Castaños, F., Fridman, L., 2016. Zero-dynamics design and its application to the stabilization of implicit systems. Systems & Control Letters 98, 74-78. https://doi.org/10.1016/j.sysconle.2016.10.008
Hidalgo, H., Huerta, H., 2021. Control por modos deslizantes para vehículo eléctrico con velocidad diferencial. Revista Iberoamericana de Automática e Informática industrial 18, 115-124. https://doi.org/10.4995/riai.2020.13440
Kunusch, C., Puleston, P.F., Mayosky, M.A., 2008. Estudio de Algoritmos 2- Deslizantes Aplicados al Control de Pilas de Combustible. Revista Iberoamericana de Automática e Informática Industrial RIAI. https://doi.org/10.1016/S1697-7912(08)70161-4
Levant, A., 1993. Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58, 1247-1263. https://doi.org/10.1080/00207179308923053
Luo, D., Xiong, X., Jin, S., Kamal, S., 2018. Adaptive gains of dual level to super-twisting algorithm for sliding mode design. IET Control Theory Applications 12, 2347-2356. https://doi.org/10.1049/iet-cta.2018.5380
Pisano, A., Tanelli, M., Ferrara, A., 2012. Time-based switched sliding mode control for yaw rate regulation in two-wheeled vehicles, in: 2012 CDC, pp. 5028-5033. https://doi.org/10.1109/CDC.2012.6426311
Pisano, A., Tanelli, M., Ferrara, A., 2016. Switched/time-based adaptation for second-order sliding mode control. Automatica 64, 126 - 132. https://doi.org/10.1016/j.automatica.2015.11.006
Rakhtala, S.M., Casavola, A., 2022. Real-time voltage control based on a cascaded super twisting algorithm structure for dc-dc converters. IEEE Transactions on Industrial Electronics 69, 633-641. https://doi.org/10.1109/TIE.2021.3051551
Shtessel, Y., Edwards, C., Fridman, L., Levant, A., 2014. Sliding Mode Control and Observation. Springer New York. https://doi.org/10.1007/978-0-8176-4893-0
Shtessel, Y., Taleb, M., Plestan, F., 2012. A novel adaptive-gain supertwisting sliding mode controller: Methodology and application. Automatica 48, 759- 769. https://doi.org/10.1016/j.automatica.2012.02.024
Silva-Ortigoza, R., Sira-Ramírez, H., Hernández-Guzmán, V.M., 2008. Control por Modos Deslizantes y Planitud Diferencial de un Convertidor de CD/CD Boost: Resultados Experimentales. Revista Iberoamericana de Automática e Informática Industrial RIAI 5, 77-82. https://doi.org/10.1016/S1697-7912(08)70180-8
Terán, R., Pérez, J., Beristáin, J., Cárdenas, V., 2020. Sintonización del controlador en cascada PI-STA para aplicaciones de filtros activos de potencia. Revista Iberoamericana de Automática e Infomática industrial 17, 130-143. https://doi.org/10.4995/riai.2020.12403
Utkin, V., Poznyak, A., Orlov, Y., Polyakov, A., 2020. Road Map for Sliding Mode Control Design. Springer. https://doi.org/10.1007/978-3-030-41709-3
Utkin, V.I., Poznyak, A.S., 2013. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica 49, 39- 47. https://doi.org/10.1016/j.automatica.2012.09.008
[-]