- -

Control de un sistema multivariable no lineal y en fase no mínima empleando un controlador predictivo neuronal

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control de un sistema multivariable no lineal y en fase no mínima empleando un controlador predictivo neuronal

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calle Chojeda, Elmer es_ES
dc.contributor.author Oliden Semino, José es_ES
dc.contributor.author Ipanaqué Alama, William es_ES
dc.date.accessioned 2023-01-17T08:55:51Z
dc.date.available 2023-01-17T08:55:51Z
dc.date.issued 2022-12-28
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/191370
dc.description.abstract [EN] In this paper, a Neural Predictive Controller (ANN-MPC) is proposed to control a nonlinear quadruple tank system, which is complex to control due to the nonlinearity of its valves and the interaction between its controlled variables. In addition, the problem is aggravated since the process presents a transient response with inverse dynamics due to being in a non-minimum phase. The ANN-MPC employs a modular artificial neural network framework and the Levenberg-Marquardt training algorithm to more accurately and quickly estimate nonlinear process outputs and avoid model overfitting. Operational data was generated from the plant to train the neural network using Matlab. The performance of the ANN-MPC under reference changes was tested and compared with a linear MPC and a non-linear MPC. The simulation results showed that the ANN-MPC produced a shorter settling time than the linear MPC and generated RMSE values of the outputs similar to those of the NMPC. In addition, the computation time required to calculate the optimal control variable was reduced compared to the NMPC. es_ES
dc.description.abstract [ES] En este artículo se propone un Controlador Predictivo Neuronal (ANN-MPC) para controlar un sistema no lineal de tanque cuádruple, el cual es complejo de controlar debido a la no linealidad de sus válvulas y a la interacción entre sus variables controladas. Además, el problema se agrava ya que el proceso presenta una respuesta transitoria con dinámica inversa por estar en fase no mínima. El ANN-MPC emplea una estructura modular de red neuronal artificial y el algoritmo de entrenamiento Levenberg-Marquardt para estimar con mayor precisión y rapidez las salidas del proceso no lineal y evitar el sobreajuste del modelo. Se generaron datos operativos a partir de la planta para entrenar la red neuronal empleando Matlab. Se probó el rendimiento del ANN-MPC ante cambios de referencia y se comparó con un MPC lineal y un MPC no lineal. Los resultados de simulación mostraron que el ANN-MPC produjo un menor tiempo de establecimiento que el MPC lineal y generó valores RMSE de las salidas similares a los del NMPC. Además, se redujo el tiempo de cómputo requerido para calcular la variable de control óptima comparado con el NMPC. es_ES
dc.description.sponsorship E. Calle reconoce el apoyo financiero del Proyecto Concytec- Banco Mundial ”Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica”8682-PE, a través de su unidad ejecutora Pro-Ciencia. [Contrato número 06-2018-FONDECYT /BM], para su trabajo de investigación denominado Control de un sistema multivariable no lineal y en fase no mínima empleando un controlador predictivo neuronal, ejecutado como parte del programa de Doctorado en Ingeniería con mención en Automatización, Control, y Optimización de Procesos, del Departamento de Ingeniería Mecánico-Eléctrica de la Universidad de Piura, Perú. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Model based predictive control es_ES
dc.subject Artificial neural networks es_ES
dc.subject MIMO systems es_ES
dc.subject Quadruple-tank system es_ES
dc.subject Control predictivo basado en modelo es_ES
dc.subject Redes neuronales artificiales es_ES
dc.subject Sistema MIMO es_ES
dc.subject Sistema de tanque cuádruple es_ES
dc.title Control de un sistema multivariable no lineal y en fase no mínima empleando un controlador predictivo neuronal es_ES
dc.title.alternative Control of a non-linear and non-minimum phase multivariable system using a neural predictive controller es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.17375
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//06-2018-FONDECYT%2FBM/Control de un sistema multivariable no lineal y en fase no mínima empleando un controlador predictivo neuronal es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno del Perú//8682-PE/Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Calle Chojeda, E.; Oliden Semino, J.; Ipanaqué Alama, W. (2022). Control de un sistema multivariable no lineal y en fase no mínima empleando un controlador predictivo neuronal. Revista Iberoamericana de Automática e Informática industrial. 20(1):32-43. https://doi.org/10.4995/riai.2022.17375 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.17375 es_ES
dc.description.upvformatpinicio 32 es_ES
dc.description.upvformatpfin 43 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\17375 es_ES
dc.contributor.funder Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica, Perú es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, Perú es_ES
dc.contributor.funder World Bank Group es_ES
dc.contributor.funder Universidad de Piura es_ES
dc.contributor.funder Gobierno del Perú es_ES
dc.description.references Alvarado, I., Limon, D., Muñoz de la Peña, D., Maestre, J., Ridao, M., Scheu, H., Marquardt, W., Negenborn, R., De Schutter, B., Valencia, F., Espinosa, J., 2011. A comparative analysis of distributed mpc techniques applied to the hd-mpc four-tank benchmark. Journal of Process Control, 21(5), 800–815. Special Issue on Hierarchical and Distributed Model Predictive Control. DOI: 10.1016/j.jprocont.2011.03.003 es_ES
dc.description.references Amari, S.-i., 1993. Backpropagation and stochastic gradient descent method. Neurocomputing 5 (4), 185–196. DOI: 10.1016/0925–2312(93)90006–O es_ES
dc.description.references Bahar, A., Özgen, C., Leblebicioˇglu, K., Halıcı, U., 2004. Artificial neural network estimator design for the inferential model predictive control of an industrial distillation column. Industrial & Engineering Chemistry Research, 43(19), 6102–6111. DOI: 10.1021/ie030585g es_ES
dc.description.references Brigham, K., Gupta, S., Brigham, J. C., 2018. Predicting responses to mechanical ventilation for preterm infants with acute respiratory illness using artificial neural networks. International Journal for Numerical Methods in Biomedical Engineering, 34(8), e3094. DOI: 10.1002/cnm.3094 es_ES
dc.description.references Calle, E., Oliden, J., 2021a. Iterative dual-gradient descent method for model predictive control with constraints. In 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4. DOI: 0.1109/INTERCON52678.2021.9532891 es_ES
dc.description.references Calle, E., Oliden, J., 2021b. Recurrent neural network based predictive control applied to 4 coupled-tank system. In 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), 1–6. DOI: 10.1109/ICAACCA51523.2021.9465192 es_ES
dc.description.references Carvalho, C. B., Carvalho, E. P., Ravagnani, M. A. S. S., 2020. Implementation of a neural network mpc for heat exchanger network temperature control. Brazilian Journal of Chemical Engineering, 3, 729–744. DOI: 10.1007/s43153-020-00058-2 es_ES
dc.description.references Colosi, T., Abrudean, M.-I., 2013. Numerical Simulation of Distributed Parameter Processes. Springer International Publishing. DOI: 10.1007/978-3-319-00014-5 es_ES
dc.description.references Csekö, L. H., Kvasnica, M., Lantos, B., 2015. Explicit mpc-based rbf neural network controller design with discrete-time actual kalman filter for semiactive suspension. IEEE Transactions on Control Systems Technology, 23(5), 1736–1753. DOI: 10.1109/TCST.2014.2382571 es_ES
dc.description.references Dong, L., Yan, J., Yuan, X., He, H., Sun, C., 2019. Functional nonlinear model predictive control based on adaptive dynamic programming. IEEE Transactions on Cybernetics, 49(12), 4206–4218. DOI: 10.1109/TCYB.2018.2859801 es_ES
dc.description.references Gao, Y., Xu, X., Yang, Y., 2011. A new neural network for solving nonlinear programming problems. Advances in Neural Networks – ISNN 2011, 565–571. DOI: 10.1007/978-3-642-21105-8_65 es_ES
dc.description.references Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. DOI: 10.1016/0893-6080(89)90020-8 es_ES
dc.description.references Johansson, K. H., 2000. The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Transactions on Control Systems Technology, 8(3), 456–465. DOI: 10.1109/87.845876 es_ES
dc.description.references Kouvaritakis, B., Cannon, M., 2016. Model Predictive Control: Classical, Robust and Stochastic. Springer, Cham, 1st ed. https://doi.org/10.1007/978-3-319-24853-0 es_ES
dc.description.references Lucia, S., Karg, B., 2018. A deep learning-based approach to robust nonlinear model predictive control. IFAC-PapersOnLine, vol. 51, no. 20, 511–516. 6th IFAC Conference on Nonlinear Model Predictive Control NMPC 2018. DOI: 10.1016/j.ifacol.2018.11.038 es_ES
dc.description.references Manonmani, A., Thyagarajan, T., Elango, M., Sutha, S., 2018. Modelling and control of greenhouse system using neural networks. Transactions of the Institute of Measurement and Control 40, 918e929. DOI: 10.1177/0142331216670235 es_ES
dc.description.references Nguyen, N.-S., 2020. Level control of quadruple tank system based on adaptive inverse evolutionary neural controller. International Journal of Control, Automation and Systems 18. DOI: 10.1007/s12555-019-0504-8 es_ES
dc.description.references Pan, Y., Wang, J., 2010. A neurodynamic optimization approach to nonlinear model predictive control. In 2010 IEEE International Conference on Systems, Man and Cybernetics, 1597–1602. DOI: 10.1109/ICSMC.2010.5642367 es_ES
dc.description.references Pan, Y., Wang, J., 2012. Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks. IEEE Transactions on Industrial Electronics, 59(8), 3089–3101. DOI: 10.1109/TIE.2011.2169636 es_ES
dc.description.references Piga, D., Forgione, M., Formentin, S., Bemporad, A., 2019. Performance oriented model learning for data-driven mpc design. IEEE Control Systems Letters, 3(3), 577–582. DOI: 10.1109/LCSYS.2019.2913347 es_ES
dc.description.references Popoola, S. I., Jefia, A., Atayero, A. A., Kingsley, O., Faruk, N., Oseni, O. F., Abolade, R. O., 2019. Determination of neural network parameters for path loss prediction in very high frequency wireless channel. IEEE Access 7, 150462–150483. DOI: 10.1109/ACCESS.2019.2947009. es_ES
dc.description.references Rawlings, J. B., Mayne, D. Q., Moritz, M. D. (Eds.), 2017. Model predictive control: theory, computation, and design, 2nd Edition. Nob Hill Publishing. es_ES
dc.description.references Saadon, A., Abdullah, J., Muhammad, N. S., Ariffin, J., Sep 2020. Development of riverbank erosion rate predictor for natural channels using narx-qr factorization model: a case study of sg. bernam, selangor, malaysia. Neural Computing and Applications 32 (18), 14839–14849. DOI: 10.1007/s00521-020-04835-5 es_ES
dc.description.references Sarali, D. S., Agnes Idhaya Selvi, V., Pandiyan, K., 2019. An improved design for neural-network-based model predictive control of three-phase inverters. In 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES), 1–5. DOI: 10.1109/INCCES47820.2019.9167697 es_ES
dc.description.references Shin, Y., Smith, R., Hwang, S., 2020. Development of model predictive control system using an artificial neural network: A case study with a distillation column. Journal of Cleaner Production, 277(2020) 124124. DOI: 10.1016/j.jclepro.2020.124124 es_ES
dc.description.references Tang, W., Daoutidis, P., 2019. Distributed control and optimization of process system networks: A review and perspective. Chinese Journal of Chemical Engineering, 27(7), 1461–1473. DOI: 10.1016/j.cjche.2018.08.027 es_ES
dc.description.references Viera, B. G., Santos, V., Carvalho, F. R., Pereira, J., Frattini Fileti, A. M., 2005. Identification and predictive control of a fcc unit using a mimo neural model. Chemical Engineering and Processing, 44(8), 855–868. DOI: 10.1016/j.cep.2004.08.008 es_ES
dc.description.references Xu, J., Li, C., He, X., Huang, T., 2016. Recurrent neural network for solving model predictive control problem in application of four-tank benchmark. Neurocomputing 190, 172–178. DOI: 10.1016/j.neucom.2016.01.020 es_ES
dc.description.references Yan, Y., Xu, Q., 2019. Neural networks-based model predictive control for precision motion control of a micropositioning system. In 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR), 252–257. DOI: 10.1109/RCAR47638.2019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem