Mostrar el registro completo del ítem
González-Cebrián, A.; Borràs-Ferrís, J.; Ordovás-Baines, JP.; Hermenegildo-Caudevilla, M.; Climente-Martí, M.; Tarazona, S.; Vitale, R.... (2022). Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients. PLoS ONE. 17(9):1-17. https://doi.org/10.1371/journal.pone.0274171
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192564
Título: | Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients | |
Autor: | Ordovás-Baines, Juan Pablo Hermenegildo-Caudevilla, Marta Climente-Martí, Mónica Palací-López, Daniel Sierra-Sánchez, Jesús Francisco Saez de la Fuente, Javier | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] The clinical course of COVID-19 is highly variable. It is therefore essential to predict as early and accurately as possible the severity level of the disease in a COVID-19 patient who is admitted to the hospital. ...[+]
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1371/journal.pone.0274171 | |
Código del Proyecto: |
|
|
Agradecimientos: |
The authors acknowledge the support provided by the Spanish Ministry of Science and Innovation (PID2020-119262RB-I00), the Generalitat Valenciana (AICO/2021/111), the UPV Research and Development Support Programme PAID-01-17, ...[+]
|
|
Tipo: |
|