- -

Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques

Show full item record

Paya-Bosch, E.; Bori, L.; Colomer, A.; Meseguer, M.; Naranjo Ornedo, V. (2022). Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques. Computer Methods and Programs in Biomedicine. 221(106895):1-12. https://doi.org/10.1016/j.cmpb.2022.106895

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192603

Files in this item

Item Metadata

Title: Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques
Author: Paya-Bosch, Elena Bori, Lorena Colomer, Adrián Meseguer, Marcos Naranjo Ornedo, Valeriana
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Issued date:
Abstract:
[EN] Embryo morphology is a predictive marker for implantation success and ultimately live births. Viability evaluation and quality grading are commonly used to select the embryo with the highest implantation potential. ...[+]
Subjects: Supervised contrastive learning , Inductive transfer learning , Viability assessment , Quality assessment , Embryo grading , Convolutional neural networks
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Computer Methods and Programs in Biomedicine. (issn: 0169-2607 )
DOI: 10.1016/j.cmpb.2022.106895
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.cmpb.2022.106895
Project ID:
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2021%2F054//SISTEMA AUTOMÁTICO DE PREDICCIÓN DE LA CALIDAD../
info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//IDIFEDER%2F2020%2F030//INTELIGENCIA ARTIFICIAL EN LA NUBE APLICADO AL CAMPO DE LA PATOLOGIA DIGITAL /
info:eu-repo/grantAgreement/MCIU//DIN2018-009911/
info:eu-repo/grantAgreement/AVI//2002-VLC-011-MM/
Thanks:
This work has been partially funded by Agencia Valenciana de la Innovacion (AVI) (2002-VLC-011-MM) . The work of Elena Pay Bosch has been supported by the Spanish Government (DIN2018-009911) and the work of Valery Naranjo ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record