- -

Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Paya-Bosch, Elena es_ES
dc.contributor.author Bori, Lorena es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Meseguer, Marcos es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2023-03-24T19:01:21Z
dc.date.available 2023-03-24T19:01:21Z
dc.date.issued 2022-06-01 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192603
dc.description.abstract [EN] Embryo morphology is a predictive marker for implantation success and ultimately live births. Viability evaluation and quality grading are commonly used to select the embryo with the highest implantation potential. However, the traditional method of manual embryo assessment is time-consuming and highly susceptible to inter-and intra-observer variability. Automation of this process results in more objective and accurate predictions.Method: In this paper, we propose a novel methodology based on deep learning to automatically evaluate the morphological appearance of human embryos from time-lapse imaging. A supervised contrastive learning framework is implemented to predict embryo viability at day 4 and day 5, and an inductive transfer approach is applied to classify embryo quality at both times.Results: Results showed that both methods outperformed conventional approaches and improved state-ofthe-art embryology results for an independent test set. The viability result achieved an accuracy of 0.8103 and 0.9330 and the quality results reached values of 0.7500 and 0.8001 for day 4 and day 5, respectively. Furthermore, qualitative results kept consistency with the clinical interpretation. Conclusions: The proposed methods are up to date with the artificial intelligence literature and have been proven to be promising. Furthermore, our findings represent a breakthrough in the field of embryology in that they study the possibilities of embryo selection at day 4. Moreover, the grad-CAMs findings are directly in line with embryologists' decisions. Finally, our results demonstrated excellent potential for the inclusion of the models in clinical practice. es_ES
dc.description.sponsorship This work has been partially funded by Agencia Valenciana de la Innovacion (AVI) (2002-VLC-011-MM) . The work of Elena Pay Bosch has been supported by the Spanish Government (DIN2018-009911) and the work of Valery Naranjo Ornedo by the Generalitat Valenciana (AEST/2021/054) . We gratefully acknowledge the support from the Generalitat Valenciana with the donation of the DGX A100 used for this work, action co-nanced by the European Union through the Operational Program of the European Regional Development Fund of the Co-munitat Valenciana 2014-2020 (IDIFEDER/2020/030) . es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Supervised contrastive learning es_ES
dc.subject Inductive transfer learning es_ES
dc.subject Viability assessment es_ES
dc.subject Quality assessment es_ES
dc.subject Embryo grading es_ES
dc.subject Convolutional neural networks es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2022.106895 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2021%2F054//SISTEMA AUTOMÁTICO DE PREDICCIÓN DE LA CALIDAD../ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//IDIFEDER%2F2020%2F030//INTELIGENCIA ARTIFICIAL EN LA NUBE APLICADO AL CAMPO DE LA PATOLOGIA DIGITAL / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//DIN2018-009911/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//2002-VLC-011-MM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Paya-Bosch, E.; Bori, L.; Colomer, A.; Meseguer, M.; Naranjo Ornedo, V. (2022). Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques. Computer Methods and Programs in Biomedicine. 221(106895):1-12. https://doi.org/10.1016/j.cmpb.2022.106895 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2022.106895 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 221 es_ES
dc.description.issue 106895 es_ES
dc.identifier.pmid 35609359 es_ES
dc.relation.pasarela S\466303 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem