- -

Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques

Mostrar el registro completo del ítem

Paya-Bosch, E.; Bori, L.; Colomer, A.; Meseguer, M.; Naranjo Ornedo, V. (2022). Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques. Computer Methods and Programs in Biomedicine. 221(106895):1-12. https://doi.org/10.1016/j.cmpb.2022.106895

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192603

Ficheros en el ítem

Metadatos del ítem

Título: Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques
Autor: Paya-Bosch, Elena Bori, Lorena Colomer, Adrián Meseguer, Marcos Naranjo Ornedo, Valeriana
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] Embryo morphology is a predictive marker for implantation success and ultimately live births. Viability evaluation and quality grading are commonly used to select the embryo with the highest implantation potential. ...[+]
Palabras clave: Supervised contrastive learning , Inductive transfer learning , Viability assessment , Quality assessment , Embryo grading , Convolutional neural networks
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Computer Methods and Programs in Biomedicine. (issn: 0169-2607 )
DOI: 10.1016/j.cmpb.2022.106895
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cmpb.2022.106895
Código del Proyecto:
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2021%2F054//SISTEMA AUTOMÁTICO DE PREDICCIÓN DE LA CALIDAD../
info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//IDIFEDER%2F2020%2F030//INTELIGENCIA ARTIFICIAL EN LA NUBE APLICADO AL CAMPO DE LA PATOLOGIA DIGITAL /
info:eu-repo/grantAgreement/MCIU//DIN2018-009911/
info:eu-repo/grantAgreement/AVI//2002-VLC-011-MM/
Agradecimientos:
This work has been partially funded by Agencia Valenciana de la Innovacion (AVI) (2002-VLC-011-MM) . The work of Elena Pay Bosch has been supported by the Spanish Government (DIN2018-009911) and the work of Valery Naranjo ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem