Mostrar el registro sencillo del ítem
dc.contributor.author | García, Jesús Marcey | es_ES |
dc.contributor.author | Moncada, José Nicolás | es_ES |
dc.contributor.author | Rodríguez Cotrina, Juan Javier | es_ES |
dc.date.accessioned | 2023-04-18T10:45:37Z | |
dc.date.available | 2023-04-18T10:45:37Z | |
dc.date.issued | 2023-03-31 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/192775 | |
dc.description.abstract | [EN] This article describes the development of a strategy to improve the navigability of a Skid Steer mobile robot when it travels on inclined surfaces, using its arm while consuming the least amount of energy. For this, a model of the energy consumption of the arm with 2 degrees of freedom was developed, which was validated using the MSC ADAMS software. the strategy was designed that allow the robot to position its arm with compensatory movements or with the end effector in contact with the ground to avoid overturning and sliding down, in addition to maintaining the steering, while lowering the energy consumption caused by the maneuver. Next, the strategy was evaluated through simulation and experiments with the real robot, determining its effectiveness according to the parameters defined in its design and implementation. | es_ES |
dc.description.abstract | [ES] Este artículo describe el desarrollo de una estrategia para mejorar la navegabilidad de un robot móvil Skid Steer cuando se desplaza sobre superficies inclinadas, utilizando su brazo mientras consume la menor cantidad de energía. Para ello se desarrolló un modelo del consumo energético del brazo con 2 grados de libertad, el cual fue validado mediante el software MSC ADAMS. Luego, se diseñó la estrategia que permite al robot posicionar su brazo con movimientos compensatorios o con el efector final en contacto con el suelo para evitar vuelcos y deslizamientos, además de mantener el direccionamiento, mientras se disminuye el consumo de energía que provoca la maniobra. La estrategia se evaluó mediante simulación y experimentos con el robot real, determinando su efectividad de acuerdo a los parámetros definidos en su diseño e implementación. | es_ES |
dc.description.sponsorship | Decanato de Investigación de la Universidad Nacional Experimental del Táchira (proyectos No. 01- 025-2016 y 01-03-2020) | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Energy consumption | es_ES |
dc.subject | Navigability | es_ES |
dc.subject | Skid steer robot | es_ES |
dc.subject | Slide-Down | es_ES |
dc.subject | Tip-over stability | es_ES |
dc.subject | Vehicle steerability | es_ES |
dc.subject | Consumo de energía | es_ES |
dc.subject | Navegabilidad | es_ES |
dc.subject | Robot skid steer | es_ES |
dc.subject | Deslizamiento hacia abajo | es_ES |
dc.subject | Estabilidad al vuelco | es_ES |
dc.subject | Direccionamiento del vehículo | es_ES |
dc.title | Mejoramiento de la navegabilidad de un robot móvil considerando el consumo energético de su brazo | es_ES |
dc.title.alternative | Improving the navigability of a mobile robot considering the energy consumption of its arm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.17806 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UNET//01-025-2016 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNET//01-03-2020 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | García, JM.; Moncada, JN.; Rodríguez Cotrina, JJ. (2023). Mejoramiento de la navegabilidad de un robot móvil considerando el consumo energético de su brazo. Revista Iberoamericana de Automática e Informática industrial. 20(2):115-123. https://doi.org/10.4995/riai.2022.17806 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.17806 | es_ES |
dc.description.upvformatpinicio | 115 | es_ES |
dc.description.upvformatpfin | 123 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\17806 | es_ES |
dc.contributor.funder | Universidad Nacional Experimental del Táchira, Venezuela | es_ES |
dc.description.references | Abo-Shanab, R., & Sepehri, N. (2005). Tip-over stability of manipulator-like mobile hydraulic machines. Journal of Dynamic Systems, Measurement and Control , 127 (2), 295-301. https://doi.org/10.1115/1.1898239 | es_ES |
dc.description.references | Acosta, J., Andaluz, V., González-de-Rivera, G., & Garrido, J. (2019). Energy-saver mobile manipulator based on numerical methods. Electronics , 8 (1100), 1-26. https://doi.org/10.3390/electronics8101100 | es_ES |
dc.description.references | Beck, C., Miro, J., & Dissanayake, G. (2009). Trajectory optimisation for increased stability of mobile robots operating in uneven terrains. IEEE International Conference on Control and Automation, (págs. 1913-1919). Christchurch. https://doi.org/10.1109/ICCA.2009.5410513 | es_ES |
dc.description.references | Ben-Tzvi, P. (2010). Experimental validation and field performance metrics of a hybrid mobile robot mechanism. Journal of Field Robotics , 27 (3), 250-267. https://doi.org/10.1002/rob.20337 | es_ES |
dc.description.references | Budynas, R., & Nisbett, K. (2008). Diseño en Ingeniería Mecánica de Shigley (8va edición ed.). México: McGraw-Hil/Interamericana Editores. | es_ES |
dc.description.references | Choi, B., Park, G., & Lee, Y. (2018). Practical control of a rescue robot while maneuvering on uneven terrain. Journal of Mechanical Science and Technology , 32 (5), 2021-2028. https://doi.org/10.1007/s12206-018-0410-7 | es_ES |
dc.description.references | Ding, X., Liu, Y., Hou, J., & Ma, Q. (2019). Online dynamic tip-over avoidance for a wheeled mobile manipulator with an improved tip-over moment stability criterion. IEEE Access , 7, 67632 - 67645. https://doi.org/10.1109/ACCESS.2019.2915115 | es_ES |
dc.description.references | García, J. M., Bohórquez, A., & Valero, A. (2020). Suspension effect in tip-over stability and steerability of robots moving on sloping terrains. IEEE Latin America Transactions , 18 (8), 1381-1389. https://doi.org/10.1109/TLA.2020.9111673 | es_ES |
dc.description.references | García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017b). Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. https://doi.org/10.1016/j.robot.2016.12.007 | es_ES |
dc.description.references | García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017c). Slide-Down Prevention for Wheeled Mobile Robots on Slopes. 3rd International Conference on Mechatronics and Robotics Engineering, (págs. 1-6). Paris. https://doi.org/10.1145/3068796.3068820 | es_ES |
dc.description.references | García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2015b). Steerability analysis on slopes of a mobile robot with a ground contact arm. Proc. 23rd Mediterranean Conference on Control and Automation, (págs. 267-272). Torremolinos. https://doi.org/10.1109/MED.2015.7158761 | es_ES |
dc.description.references | García, J. M., Medina, I., Cerezo, A. G., & Linares, A. (2015a). Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions , 13 (10), 3228-3234. https://doi.org/10.1109/TLA.2015.7387226 | es_ES |
dc.description.references | García, J. M., Medina, I., Martínez, J. L., García-Cerezo, A., Linares, A., & Porras, C. (2017a). Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo. Revista Iberoamericana de Automática e Informática Industrial , 14, 174-183. https://doi.org/10.1016/j.riai.2016.09.012 | es_ES |
dc.description.references | Ghaffari, A., Meghdari, A., Naderi, D., & Eslami, S. (2008). Tipover stability enhancement of wheeled mobile manipulators using an adaptive neuro- fuzzy inference controller system. World academy of science, engineering and technology, (págs. 241-247). | es_ES |
dc.description.references | Go, Y., Yin, X., & Bowling, A. (2006). Navigability of multi-legged robots. IEEE/ASME Transactions on Mechatronics , 11 (1), 1-8. https://doi.org/10.1109/TMECH.2005.863361 | es_ES |
dc.description.references | Hatano, M., & Obara, H. (2003). Stability evaluation for mobile manipulators using criteria based on reaction. SICE Annual Conference, (págs. 2050-2055). Fukui. | es_ES |
dc.description.references | He, L. (2012). Tip-over avoidance algorithm for modular mobile manipulator. First International Conference on Innovative Engineering Systems, (págs. 115-120). Alexandria. https://doi.org/10.1109/ICIES.2012.6530855 | es_ES |
dc.description.references | Kim, J., Chung, W., Youm, Y., & Lee, B. (2002). Real-time ZMP compensation method using null motion for mobile manipulators. IEEE International Conference on Robotics & Automation, (págs. 1967-1972). Washington. https://doi.org/10.1109/ROBOT.2002.1014829 | es_ES |
dc.description.references | Meghdari, A., Naderi, D., & Alam, M. (2005). Neural-network-based observer for real-time tipover estimation. Mechatronics , 15, 989-1004. https://doi.org/10.1016/j.mechatronics.2005.03.005 | es_ES |
dc.description.references | Montaño, J., Palmer, A., Sesé, A., & Cajal, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema , 25 (4), 500-506. DOI: 10.7334/psicothema2013.23. | es_ES |
dc.description.references | Morales, J., Martínez, J. L., Mandow, A., Serón, J., & García-Cerezo, A. (2013). Static tip-over stability analysis for a robotic vehicle with a single-axle trailer on slopes based on altered supporting polygons. IEEE/ASME Transactions on Mechatronics , 18 (2), 697-705. https://doi.org/10.1109/TMECH.2011.2181955 | es_ES |
dc.description.references | Pedrero, J., Pleguezuelos, M., & Muñoz, M. (2009). Simplified calculation method for the efficiency of involute spur gears. ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (págs. 131-138). San Diego. https://doi.org/10.1115/DETC2009-87179 | es_ES |
dc.description.references | Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., & Lefeber, D. (2016). Energy consumption of geared DC motors in dynamic applications: comparing modeling approaches. IEEE Robotics and Automation Letters , 1 (1), 524 - 530. https://doi.org/10.1109/LRA.2016.2517820 | es_ES |