- -

Improving Cultural Heritage conservation: LSTM neural networks to effectively processing end-user's maintenance requests

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving Cultural Heritage conservation: LSTM neural networks to effectively processing end-user's maintenance requests

Mostrar el registro completo del ítem

D'orazio, M.; Bernardini, G.; Di Giuseppe, E. (2023). Improving Cultural Heritage conservation: LSTM neural networks to effectively processing end-user's maintenance requests. VITRUVIO - International Journal of Architectural Technology and Sustainability. 8:18-29. https://doi.org/10.4995/vitruvio-ijats.2023.18811

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192955

Ficheros en el ítem

Metadatos del ítem

Título: Improving Cultural Heritage conservation: LSTM neural networks to effectively processing end-user's maintenance requests
Autor: D'Orazio, Marco Bernardini, Gabriele Di Giuseppe, Elisa
Fecha difusión:
Resumen:
[EN] Preventive conservation of cultural heritage can avoid or minimize future damage, deterioration, loss and consequently, any invasive intervention. Recently, Machine Learning methods were proposed to support preventive ...[+]
Palabras clave: Cultural heritage , Preventive conservation , Maintenance , NLP , Neural Networks
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
VITRUVIO - International Journal of Architectural Technology and Sustainability. (eissn: 2444-9091 )
DOI: 10.4995/vitruvio-ijats.2023.18811
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/vitruvio-ijats.2023.18811
Tipo: Artículo

References

Baek, S., Jung, W. and Han, S.H. (2021), “A critical review of text-based research in construction: Data source, analysis method, and implications”, Automation in Construction, Elsevier B.V., Vol. 132 No. August, p. 103915. https://doi.org/10.1016/j.autcon.2021.103915

Balen, K. Van. (2015), “Preventive Conservation of Historic Buildings”, Restoration of Buildings and Monuments, Vol. 21 No. 2–3, pp. 99–104. https://doi.org/10.1515/rbm-2015-0008

Balen, K. van and Vandesande, A. (2018), Innovative Built Heritage Models: Edited Contributions to the International Conference on Innovative Built Heritage Models and Preventive Systems (CHANGES 2017), February 6-8, 2017, Leuven, Belgium, CRC Press, available at: https://books.google.it/books?id=tCxKDwAAQBAJ [+]
Baek, S., Jung, W. and Han, S.H. (2021), “A critical review of text-based research in construction: Data source, analysis method, and implications”, Automation in Construction, Elsevier B.V., Vol. 132 No. August, p. 103915. https://doi.org/10.1016/j.autcon.2021.103915

Balen, K. Van. (2015), “Preventive Conservation of Historic Buildings”, Restoration of Buildings and Monuments, Vol. 21 No. 2–3, pp. 99–104. https://doi.org/10.1515/rbm-2015-0008

Balen, K. van and Vandesande, A. (2018), Innovative Built Heritage Models: Edited Contributions to the International Conference on Innovative Built Heritage Models and Preventive Systems (CHANGES 2017), February 6-8, 2017, Leuven, Belgium, CRC Press, available at: https://books.google.it/books?id=tCxKDwAAQBAJ

Borgarino, M.P. (2015), “Managing Built Cultural Heritage , from condition assessment to risk assessment from condition assessment to risk assessment”, ISBP2015.

Bortolini, R. and Forcada, N. (2020), “Analysis of building maintenance requests using a text mining approach: building services evaluation”, Building Research & Information, Vol. 48 No. 2, pp. 207–217. https://doi.org/10.1080/09613218.2019.1609291

Burak Gunay, H., Shen, W. and Newsham, G. (2019), “Data analytics to improve building performance: A critical review”, Automation in Construction, Elsevier, Vol. 97, pp. 96–109. https://doi.org/10.1016/j.autcon.2018.10.020

Carman, J. (2019), “What sustaining heritage really does”, VITRUVIO - International Journal of Architectural Technology and Sustainability, Vol. 4 No. 1, p. 1. https://doi.org/10.4995/vitruvio-ijats.2019.11772

Çınar, Z.M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M. and Safaei, B. (2020), “Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0”, Sustainability, Vol. 12 No. 19, p. 8211. https://doi.org/10.3390/su12198211

D’Orazio, M., Di Giuseppe, E. and Bernardini, G. (2022), “Automatic detection of maintenance requests: Comparison of Human Manual Annotation and Sentiment Analysis techniques”, Automation in Construction, Vol. 134, p. 104068. https://doi.org/10.1016/j.autcon.2021.104068

De Gregorio, S. (2019). “The rehabilitation of buildings. Reflections on construction systems for the environmental sustainability of interventions”, VITRUVIO - International Journal of Architectural Technology and Sustainability, 4(2), p. 47. https://doi.org/10.4995/vitruvio-ijats.2019.12634

Della Torre, S. (2010). “Preventiva, integrata, programmata: le logiche coevolutive della conservazione”, Pensare la prevenzione. Manufatti, usi, ambienti: atti del XXVI convegno Scienza e Beni culturali (Bressanone 13-16 Luglio 2010), pp. 70–81.

Du, M., Li, F., Zheng, G. and Srikumar, V. (2017), “DeepLog: Anomaly detection and diagnosis from system logs through deep learning”, Proceedings of the ACM Conference on Computer and Communications Security, pp. 1285–1298. https://doi.org/10.1145/3133956.3134015

Dzulkifli, N., Sarbini, N.N., Ibrahim, I.S., Abidin, N.I., Yahaya, F.M. and Nik Azizan, N.Z. (2021), “Review on maintenance issues toward building maintenance management best practices”, Journal of Building Engineering, Elsevier Ltd, Vol. 44 No. July, p. 102985. https://doi.org/10.1016/j.jobe.2021.102985

Eken, E., Taşcı, B. and Gustafsson, C. (2019), “An evaluation of decision-making process on maintenance of built cultural heritage: The case of Visby, Sweden”, Cities, Vol. 94 No. June, pp. 24–32. https://doi.org/10.1016/j.cities.2019.05.030

El-Dash, K. (2007), “Assessing Human Resource Management in Construction Projects in Kuwait”, Journal of Asian Architecture and Building Engineering, Vol. 6 No. 1, pp. 65–71. https://doi.org/10.3130/jaabe.6.65

Ferreira, C., Silva, A., de Brito, J., Dias, I.S. and Flores-Colen, I. (2021), “The impact of imperfect maintenance actions on the degradation of buildings’ envelope components”, Journal of Building Engineering, Elsevier Ltd, Vol. 33 No. June 2020, p. 101571. https://doi.org/10.1016/j.jobe.2020.101571

Gonçalves, P., Araújo, M., Benevenuto, F. and Cha, M. (2013), “Comparing and combining sentiment analysis methods”, COSN 2013 - Proceedings of the 2013 Conference on Online Social Networks, pp. 27–37. https://doi.org/10.1145/2512938.2512951

Gunay, H.B., Shen, W. and Yang, C. (2019), “Text-mining building maintenance work orders for component fault frequency”, Building Research & Information, Taylor & Francis, Vol. 47 No. 5, pp. 518–533. https://doi.org/10.1080/09613218.2018.1459004

Gutjahr, W.J. and Reiter, P. (2010), “Bi-objective project portfolio selection and staff assignment under uncertainty”, Optimization, Taylor & Francis, Vol. 59 No. 3, pp. 417–445. https://doi.org/10.1080/02331931003700699

Hong, T., Koo, C., Kim, J., Lee, M. and Jeong, K. (2015), “A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase”, Applied Energy, Elsevier Ltd, Vol. 155, pp. 671–707. https://doi.org/10.1016/j.apenergy.2015.06.043

Kim, Y., Bang, S., Sohn, J. and Kim, H. (2022), “Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers”, Automation in Construction, Elsevier B.V., Vol. 134 No. October 2021, p. 104061. https://doi.org/10.1016/j.autcon.2021.104061

Marocco, M. and Garofolo, I. (2021), “Operational text-mining methods for enhancing building maintenance management”, Building Research and Information. https://doi.org/10.1080/09613218.2021.1953368

McArthur, J.J., Shahbazi, N., Fok, R., Raghubar, C., Bortoluzzi, B. and An, A. (2018), “Machine learning and BIM visualization for maintenance issue classification and enhanced data collection”, Advanced Engineering Informatics, Elsevier, Vol. 38 No. October 2017, pp. 101–112. https://doi.org/10.1016/j.aei.2018.06.007

Mo, Y., Zhao, D., Du, J., Syal, M., Aziz, A. and Li, H. (2020), “Automated staff assignment for building maintenance using natural language processing”, Automation in Construction, Vol. 113, p. 103150. https://doi.org/10.1016/j.autcon.2020.103150

Pishdad-Bozorgi, P., Gao, X., Eastman, C. and Self, A.P. (2018), “Planning and developing facility management-enabled building information model (FM-enabled BIM)”, Automation in Construction, Elsevier, Vol. 87 No. October 2017, pp. 22–38. https://doi.org/10.1016/j.autcon.2017.12.004

Ribeiro, F.N., Araújo, M., Gonçalves, P., André Gonçalves, M. and Benevenuto, F. (2016), “SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods”, EPJ Data Science, Ribeiro et al., Vol. 5 No. 1, pp. 1–29. https://doi.org/10.1140/epjds/s13688-016-0085-1

Sheu, S.H., Chang, C.C., Chen, Y.L. and George Zhang, Z. (2015), “Optimal preventive maintenance and repair policies for multi-state systems”, Reliability Engineering and System Safety, Vol. 140, pp. 78–87. https://doi.org/10.1016/j.ress.2015.03.029

Sourav Das Adhikari, Steve Hoffman and Britta Lietke. (2019), Six Emerging Trends in Facilities Management Sourcing. McKinsey & Company.

Villafranca Jiménez, M.M. and Gutiérrez-Carrillo, M.L. (2019), “The Alhambra master plan (2007-2020) as a strategic model of preventive conservation of cultural heritage”, VITRUVIO - International Journal of Architectural Technology and Sustainability, Vol. 4 No. 2, p. 59. https://doi.org/10.4995/vitruvio-ijats.2019.12642

Wu, M.C. and Sun, S.H. (2006), “A project scheduling and staff assignment model considering learning effect”, International Journal of Advanced Manufacturing Technology, Vol. 28 No. 11–12, pp. 1190–1195. https://doi.org/10.1007/s00170-004-2465-0

Yan, H., Yang, N., Peng, Y. and Ren, Y. (2020), “Data mining in the construction industry: Present status, opportunities, and future trends”, Automation in Construction, Elsevier, Vol. 119 No. May, p. 103331. https://doi.org/10.1016/j.autcon.2020.103331

Yang, C., Shen, W., Chen, Q. and Gunay, B. (2018), “A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance”, Journal of Building Engineering, Vol. 15 No. October 2017, pp. 26–32. https://doi.org/10.1016/j.jobe.2017.10.013

Žižka, J., Dařena, F. and Svoboda, A. (2019), Text Mining with Machine Learning, Text Mining with Machine Learning, available at: https://doi.org/10.1201/9780429469275

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem