- -

Fixed points which belong to the set of unit values of a suitable function on fuzzy metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed points which belong to the set of unit values of a suitable function on fuzzy metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Saleh, Hayel N. es_ES
dc.contributor.author Imdad, Mohammad es_ES
dc.contributor.author Sintunavarat, Wutiphol es_ES
dc.date.accessioned 2023-04-26T08:24:27Z
dc.date.available 2023-04-26T08:24:27Z
dc.date.issued 2023-04-05
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/192967
dc.description.abstract [EN] In this paper, we introduce the notion of fuzzy (F,ϕ,β-ψ)-contractive mappings in fuzzy metric spaces and utilize the same to prove some existence and uniqueness fuzzy ϕ-fixed point results in both M-complete and G-complete fuzzy metric spaces. The obtained results extend, generalize and improve some relevant results of the existing literature. An illustrative example is utilized to demonstrate the usefulness and effectiveness of our results. es_ES
dc.description.sponsorship This study was supported by Thammasat University Research Fund, Contract No TUFT 52/2565. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fuzzy ψ-contractive mappings es_ES
dc.subject Fuzzy (F, ϕ)-contractive mappings es_ES
dc.subject Fuzzy (F,ϕ,β-ψ)-contractive mappings es_ES
dc.subject Fuzzy ϕ-fixed points es_ES
dc.title Fixed points which belong to the set of unit values of a suitable function on fuzzy metric spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.16924
dc.relation.projectID info:eu-repo/grantAgreement/TU//TUFT 52%2F2565 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Saleh, HN.; Imdad, M.; Sintunavarat, W. (2023). Fixed points which belong to the set of unit values of a suitable function on fuzzy metric spaces. Applied General Topology. 24(1):9-24. https://doi.org/10.4995/agt.2023.16924 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.16924 es_ES
dc.description.upvformatpinicio 9 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16924 es_ES
dc.contributor.funder Thammasat University es_ES
dc.description.references M. Abbas, M. Imdad and D. Gopal, ψ-weak contractions in fuzzy metric spaces, Iranian Journal of Fuzzy Systems 8 (2011), 141-148. es_ES
dc.description.references G. Babu, K. Sarma and Y. G. Aemro, Generalization of fixed point results for (α,η,β)-contractive mappings in fuzzy metric spaces, Bangmod Int. J. Math. & Comp. Sci. 3 (2017), 35-52. es_ES
dc.description.references Z. Deng, Fuzzy pseudo-metric spaces, Journal of Mathematical Analysis and Applications 86 (1982), 74-95. https://doi.org/10.1016/0022-247X(82)90255-4 es_ES
dc.description.references M. A. Erceg, Metric spaces in fuzzy set theory, Journal of Mathematical Analysis and Applications 69 (1979), 205-230. https://doi.org/10.1016/0022-247X(79)90189-6 es_ES
dc.description.references A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 es_ES
dc.description.references D. Gopal and C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iranian Journal of Fuzzy Systems 11 (2014), 95-107. es_ES
dc.description.references M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy sets and Systems 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4 es_ES
dc.description.references V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Sets and Systems 170 (2011), 95-111. https://doi.org/10.1016/j.fss.2010.10.019 es_ES
dc.description.references V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9 es_ES
dc.description.references M. Imdad, A. R. Khan, H. N. Saleh and W. M. Alfaqih, Some ϕ-fixed point results for (F,ϕ,α-ψ)-contractive type mappings with applications, Mathematics 7 (2019), p. 122. https://doi.org/10.3390/math7020122 es_ES
dc.description.references M. Imdad, H. Saleh and W. Alfaqih, ϕ-best proximity point theorems in metric spaces with applications in partial metric spaces, TWMS J. of Apl. & Eng. Math. 10 (2020). es_ES
dc.description.references M. Jleli, B. Samet and C. Vetro, Fixed point theory in partial metric spaces via φ-fixed point's concept in metric spaces, Journal of Inequalities and Applications 2014 (2014), p. 426. https://doi.org/10.1186/1029-242X-2014-426 es_ES
dc.description.references O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy sets and Systems 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1 es_ES
dc.description.references I. Kramosil and J. Mich{'a}lek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344. es_ES
dc.description.references P. Kumrod and W. Sintunavarat, A new contractive condition approach to φ-fixed point results in metric spaces and its applications, Journal of Computational and Applied Mathematics 311 (2017), 194-204. https://doi.org/10.1016/j.cam.2016.07.016 es_ES
dc.description.references P. Kumrod and W. Sintunavarat, On generalized Ri's contraction mappings and its applications, Computational and Applied Mathematics 37 (2018), 4977-4988. https://doi.org/10.1007/s40314-018-0614-6 es_ES
dc.description.references P. Kumrod and W. Sintunavarat, On new fixed point results in various distance spaces via φ-fixed point theorems in d-generalized metric spaces with numerical results, Journal of Fixed Point Theory and Applications 21 (2019), p. 86. https://doi.org/10.1007/s11784-019-0723-x es_ES
dc.description.references D. Miheţ, On fuzzy epsilon-contractive mappings in fuzzy metric spaces, Fixed Point Theory and Applications 2007 (2007), p. 87471. https://doi.org/10.1155/2007/87471 es_ES
dc.description.references D. Miheţ, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006 es_ES
dc.description.references H. Saleh, M. Imdad and W. Alfaqih, Some metrical ϕ-fixed point results of Wardowski type with applications to integral equations, Bol. Soc. Paran. Mat. 40 (2022), 1-11. https://doi.org/10.5269/bspm.47888 es_ES
dc.description.references H. N. Saleh, I. A. Khan, M. Imdad and W. M. Alfaqih, New fuzzy φ-fixed point results employing a new class of fuzzy contractive mappings, Journal of Intelligent & Fuzzy Systems 37 (2019), 5391-5402. https://doi.org/10.3233/JIFS-190543 es_ES
dc.description.references B. Samet, C. Vetro and P. Vetro, Fixed point theorems for alpha-psi-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 es_ES
dc.description.references M. Sangurlu and D. Turkoglu, Fixed point theorems for (ψ-φ)-contractions in a fuzzy metric spaces, Journal of Nonlinear Sciences and Applications 8 (2015), 687-694. https://doi.org/10.22436/jnsa.008.05.21 es_ES
dc.description.references B. Schweizer and Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313 es_ES
dc.description.references S. Sedghi, N. Shobkolaei and I. Altun, A new approach to Caristi's fixed point theorem on non-Archimedean fuzzy metric spaces, Iranian Journal of Fuzzy Systems 12 (2015), 137-143. es_ES
dc.description.references S. Sedghi, N. Shobkolaei, T. Došenović and S. Radenović, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Mathematica Slovaca 68 (2018), 451-462. https://doi.org/10.1515/ms-2017-0115 es_ES
dc.description.references M. S. Sezen and D. Türkoğlu, Some fixed point theorems of (F,ϕ)-fuzzy contractions in fuzzy metric spaces, Journal of Inequalities & Special Functions 8 (2017). es_ES
dc.description.references P. Tirado, On compactness and G-completeness in fuzzy metric spaces, Iranian Journal of Fuzzy Systems 9 (2012), 151-158. es_ES
dc.description.references C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 162 (2011), 84-90. https://doi.org/10.1016/j.fss.2010.09.018 es_ES
dc.description.references H. Vu, Existence results for fuzzy Volterra integral equation, Journal of Intelligent & Fuzzy Systems 33 (2017), 207-213. https://doi.org/10.3233/JIFS-161467 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem