- -

Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bartwal, Ayush es_ES
dc.contributor.author Rawat, Shivam es_ES
dc.contributor.author Beg, Ismat es_ES
dc.date.accessioned 2023-05-02T06:20:39Z
dc.date.available 2023-05-02T06:20:39Z
dc.date.issued 2023-04-05
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/193021
dc.description.abstract [EN] We introduce the concept of q-ordered proximal nonunique contraction for the non self mappings and then obtain some proximity point results for these mappings. We also furnish examples to support our claims. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Best proximity point es_ES
dc.subject Proximal comparable es_ES
dc.subject Noncommutative Banach space es_ES
dc.subject Nonunique contraction es_ES
dc.title Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18029
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bartwal, A.; Rawat, S.; Beg, I. (2023). Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces. Applied General Topology. 24(1):101-113. https://doi.org/10.4995/agt.2023.18029 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18029 es_ES
dc.description.upvformatpinicio 101 es_ES
dc.description.upvformatpfin 113 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18029 es_ES
dc.description.references S. Aleksić, Z. Kadelburg, Z.D. Mitrović and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93-121. es_ES
dc.description.references I. Altun, B. Damnjanovic and D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23, no. 3 (2010), 310-316. https://doi.org/10.1016/j.aml.2009.09.016 es_ES
dc.description.references I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numer. Funct. Anal. Optim. 42, no. 8 (2021), 935-954. https://doi.org/10.1080/01630563.2021.1933526 es_ES
dc.description.references I. Altun, M. Aslantas and H. Sahin, Best proximity point results for p-proximal contractions, Acta. Math. Hung. 162, no. 2 (2020), 393-402. https://doi.org/10.1007/s10474-020-01036-3 es_ES
dc.description.references M. Aslantas, H. Sahin and I. Altun, Best proximity point theorems for cyclic p-contractions with some consequences and applications, Nonlinear Anal.: Model. Control 26, no. 1 (2021), 113-129. https://doi.org/10.15388/namc.2021.26.21415 es_ES
dc.description.references A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 3, no. 2 (2009), 236-241. https://doi.org/10.2298/AADM0902236A es_ES
dc.description.references A. Azam, I. Beg and M. Arshad, Fixed point in topological vector space valued cone metric spaces, Fixed Point Theory Appl. 2010, Article ID 604084. https://doi.org/10.1155/2010/604084 es_ES
dc.description.references A. Azam and I. Beg, Kannan type mapping in TVS-valued cone metric spaces and their application to Urysohn integral equations, Sarajevo J. Math. 9, no. 22 (2013), 243-255. https://doi.org/10.5644/SJM.09.2.09 es_ES
dc.description.references S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3, no. 1 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181 es_ES
dc.description.references S. S. Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim. 31, no. 5 (2010), 569-576. https://doi.org/10.1080/01630563.2010.485713 es_ES
dc.description.references S. S. Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl. 151, no. 1 (2011), 210-216. https://doi.org/10.1007/s10957-011-9869-4 es_ES
dc.description.references S. S. Basha and P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math. 63 (1997), 289-300. es_ES
dc.description.references S. S. Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103, no. 1 (2000), 119-129. https://doi.org/10.1006/jath.1999.3415 es_ES
dc.description.references I. Beg, A. Bartwal, S. Rawat and R. C. Dimri, Best proximity points in noncommutative Banach spaces, Comp. Appl. Math. 41 (2022), Paper no. 41. https://doi.org/10.1007/s40314-021-01741-x es_ES
dc.description.references Y. J. Cho, R. Saadati and S .H. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comp. Math. Appl. 61, no. 4 (2011), 1254-1260. https://doi.org/10.1016/j.camwa.2011.01.004 es_ES
dc.description.references K. J. Chung, Nonlinear contractions in abstract spaces, Kodai Math. J. 4, no. 2 (1981), 288-292. https://doi.org/10.2996/kmj/1138036375 es_ES
dc.description.references K. J. Chung, Remarks on nonlinear contractions, Pac. J. Math. 101, no. 1 (1982), 41-48. https://doi.org/10.2140/pjm.1982.101.41 es_ES
dc.description.references L. B. Ćirić, On some maps with a nonunique fixed point, Publ. Inst. Math. 17, no. 31 (1974), 52-58. es_ES
dc.description.references W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. Theory Methods Appl. 72, no. 5 (2010), 2259-2261. https://doi.org/10.1016/j.na.2009.10.026 es_ES
dc.description.references W. S. Du, New cone fixed point theorems for nonlinear multivalued maps with their applications, Appl. Math. Lett. 24, no. 2 (2011), 172-178. https://doi.org/10.1016/j.aml.2010.08.040 es_ES
dc.description.references A. A. Eldered and P. Veeramani, Existence and convergence for best proximity points, J. Math. Anal. Appl. 323, no. 2 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081 es_ES
dc.description.references N. Fabiano, Z. Kadelburg, N. Mirkow and S. N. Radenovic, Solving fractional differential equations using fixed point results in generalized metric spaces of Perov's type, TWMS J. App. Eng. Math., to appear. es_ES
dc.description.references L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 33, no. 2 (2007), 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087 es_ES
dc.description.references S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: a survey, Nonlinear Anal. Theory Methods Appl. 74, no. 7 (2011), 2591-2601. https://doi.org/10.1016/j.na.2010.12.014 es_ES
dc.description.references Z. Kadelburg, M. Pavlović and S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comp. Math. Appl. 59, no. 9 (2010), 3148-3159. https://doi.org/10.1016/j.camwa.2010.02.039 es_ES
dc.description.references D. R. Kurepa, Tableaux ramifiés d'ensembles. Espaces pseudo-distanciés, C. R. Math. Acad. Sci. Paris 198 (1934), 1563-1565. es_ES
dc.description.references P. D. Proinov, A unified theory of cone metric spaces and its applications to the fixed point theory, Fixed Point Theory Appl. 2013, no. 1 (2013), 1-38. https://doi.org/10.1186/1687-1812-2013-103 es_ES
dc.description.references V. S. Raj, Best proximity point theorems for nonself mappings, Fixed Point Theory 14, no. 2 (2013), 447-454. es_ES
dc.description.references S. Rawat, S. Kukreti and R. C. Dimri, Fixed point results for enriched ordered contractions in noncommutative Banach spaces, J. Anal. 30 (2022), 1555-1566. https://doi.org/10.1007/s41478-022-00418-w es_ES
dc.description.references H. Sahin, M. Aslantas and I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl. 22, no. 1 (2020), 1-13. https://doi.org/10.1007/s11784-019-0740-9 es_ES
dc.description.references H. Sahin, M. Aslantas and I. Altun, Best proximity and best periodic points for proximal nonunique contractions, J. Fixed Point Theory Appl. 23, no. 4 (2021), Paper No. 55. https://doi.org/10.1007/s11784-021-00889-7 es_ES
dc.description.references A. Sultana and V. Vetrivel, On the existence of best proximity points for generalized contractions, Appl. Gen. Topol. 15, no. 1 (2014), 55-63. https://doi.org/10.4995/agt.2014.2221 es_ES
dc.description.references Q. Xin and L. Jiang, Fixed-point theorems for mappings satisfying the ordered contractive condition on noncommutative spaces, Fixed Point Theory Appl. 2014, 2014:30. https://doi.org/10.1186/1687-1812-2014-30 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem