Mostrar el registro sencillo del ítem
dc.contributor.author | Bartwal, Ayush | es_ES |
dc.contributor.author | Rawat, Shivam | es_ES |
dc.contributor.author | Beg, Ismat | es_ES |
dc.date.accessioned | 2023-05-02T06:20:39Z | |
dc.date.available | 2023-05-02T06:20:39Z | |
dc.date.issued | 2023-04-05 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/193021 | |
dc.description.abstract | [EN] We introduce the concept of q-ordered proximal nonunique contraction for the non self mappings and then obtain some proximity point results for these mappings. We also furnish examples to support our claims. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Best proximity point | es_ES |
dc.subject | Proximal comparable | es_ES |
dc.subject | Noncommutative Banach space | es_ES |
dc.subject | Nonunique contraction | es_ES |
dc.title | Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.18029 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bartwal, A.; Rawat, S.; Beg, I. (2023). Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces. Applied General Topology. 24(1):101-113. https://doi.org/10.4995/agt.2023.18029 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.18029 | es_ES |
dc.description.upvformatpinicio | 101 | es_ES |
dc.description.upvformatpfin | 113 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\18029 | es_ES |
dc.description.references | S. Aleksić, Z. Kadelburg, Z.D. Mitrović and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93-121. | es_ES |
dc.description.references | I. Altun, B. Damnjanovic and D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23, no. 3 (2010), 310-316. https://doi.org/10.1016/j.aml.2009.09.016 | es_ES |
dc.description.references | I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numer. Funct. Anal. Optim. 42, no. 8 (2021), 935-954. https://doi.org/10.1080/01630563.2021.1933526 | es_ES |
dc.description.references | I. Altun, M. Aslantas and H. Sahin, Best proximity point results for p-proximal contractions, Acta. Math. Hung. 162, no. 2 (2020), 393-402. https://doi.org/10.1007/s10474-020-01036-3 | es_ES |
dc.description.references | M. Aslantas, H. Sahin and I. Altun, Best proximity point theorems for cyclic p-contractions with some consequences and applications, Nonlinear Anal.: Model. Control 26, no. 1 (2021), 113-129. https://doi.org/10.15388/namc.2021.26.21415 | es_ES |
dc.description.references | A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 3, no. 2 (2009), 236-241. https://doi.org/10.2298/AADM0902236A | es_ES |
dc.description.references | A. Azam, I. Beg and M. Arshad, Fixed point in topological vector space valued cone metric spaces, Fixed Point Theory Appl. 2010, Article ID 604084. https://doi.org/10.1155/2010/604084 | es_ES |
dc.description.references | A. Azam and I. Beg, Kannan type mapping in TVS-valued cone metric spaces and their application to Urysohn integral equations, Sarajevo J. Math. 9, no. 22 (2013), 243-255. https://doi.org/10.5644/SJM.09.2.09 | es_ES |
dc.description.references | S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3, no. 1 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181 | es_ES |
dc.description.references | S. S. Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim. 31, no. 5 (2010), 569-576. https://doi.org/10.1080/01630563.2010.485713 | es_ES |
dc.description.references | S. S. Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl. 151, no. 1 (2011), 210-216. https://doi.org/10.1007/s10957-011-9869-4 | es_ES |
dc.description.references | S. S. Basha and P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math. 63 (1997), 289-300. | es_ES |
dc.description.references | S. S. Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103, no. 1 (2000), 119-129. https://doi.org/10.1006/jath.1999.3415 | es_ES |
dc.description.references | I. Beg, A. Bartwal, S. Rawat and R. C. Dimri, Best proximity points in noncommutative Banach spaces, Comp. Appl. Math. 41 (2022), Paper no. 41. https://doi.org/10.1007/s40314-021-01741-x | es_ES |
dc.description.references | Y. J. Cho, R. Saadati and S .H. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comp. Math. Appl. 61, no. 4 (2011), 1254-1260. https://doi.org/10.1016/j.camwa.2011.01.004 | es_ES |
dc.description.references | K. J. Chung, Nonlinear contractions in abstract spaces, Kodai Math. J. 4, no. 2 (1981), 288-292. https://doi.org/10.2996/kmj/1138036375 | es_ES |
dc.description.references | K. J. Chung, Remarks on nonlinear contractions, Pac. J. Math. 101, no. 1 (1982), 41-48. https://doi.org/10.2140/pjm.1982.101.41 | es_ES |
dc.description.references | L. B. Ćirić, On some maps with a nonunique fixed point, Publ. Inst. Math. 17, no. 31 (1974), 52-58. | es_ES |
dc.description.references | W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. Theory Methods Appl. 72, no. 5 (2010), 2259-2261. https://doi.org/10.1016/j.na.2009.10.026 | es_ES |
dc.description.references | W. S. Du, New cone fixed point theorems for nonlinear multivalued maps with their applications, Appl. Math. Lett. 24, no. 2 (2011), 172-178. https://doi.org/10.1016/j.aml.2010.08.040 | es_ES |
dc.description.references | A. A. Eldered and P. Veeramani, Existence and convergence for best proximity points, J. Math. Anal. Appl. 323, no. 2 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081 | es_ES |
dc.description.references | N. Fabiano, Z. Kadelburg, N. Mirkow and S. N. Radenovic, Solving fractional differential equations using fixed point results in generalized metric spaces of Perov's type, TWMS J. App. Eng. Math., to appear. | es_ES |
dc.description.references | L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 33, no. 2 (2007), 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087 | es_ES |
dc.description.references | S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: a survey, Nonlinear Anal. Theory Methods Appl. 74, no. 7 (2011), 2591-2601. https://doi.org/10.1016/j.na.2010.12.014 | es_ES |
dc.description.references | Z. Kadelburg, M. Pavlović and S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comp. Math. Appl. 59, no. 9 (2010), 3148-3159. https://doi.org/10.1016/j.camwa.2010.02.039 | es_ES |
dc.description.references | D. R. Kurepa, Tableaux ramifiés d'ensembles. Espaces pseudo-distanciés, C. R. Math. Acad. Sci. Paris 198 (1934), 1563-1565. | es_ES |
dc.description.references | P. D. Proinov, A unified theory of cone metric spaces and its applications to the fixed point theory, Fixed Point Theory Appl. 2013, no. 1 (2013), 1-38. https://doi.org/10.1186/1687-1812-2013-103 | es_ES |
dc.description.references | V. S. Raj, Best proximity point theorems for nonself mappings, Fixed Point Theory 14, no. 2 (2013), 447-454. | es_ES |
dc.description.references | S. Rawat, S. Kukreti and R. C. Dimri, Fixed point results for enriched ordered contractions in noncommutative Banach spaces, J. Anal. 30 (2022), 1555-1566. https://doi.org/10.1007/s41478-022-00418-w | es_ES |
dc.description.references | H. Sahin, M. Aslantas and I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl. 22, no. 1 (2020), 1-13. https://doi.org/10.1007/s11784-019-0740-9 | es_ES |
dc.description.references | H. Sahin, M. Aslantas and I. Altun, Best proximity and best periodic points for proximal nonunique contractions, J. Fixed Point Theory Appl. 23, no. 4 (2021), Paper No. 55. https://doi.org/10.1007/s11784-021-00889-7 | es_ES |
dc.description.references | A. Sultana and V. Vetrivel, On the existence of best proximity points for generalized contractions, Appl. Gen. Topol. 15, no. 1 (2014), 55-63. https://doi.org/10.4995/agt.2014.2221 | es_ES |
dc.description.references | Q. Xin and L. Jiang, Fixed-point theorems for mappings satisfying the ordered contractive condition on noncommutative spaces, Fixed Point Theory Appl. 2014, 2014:30. https://doi.org/10.1186/1687-1812-2014-30 | es_ES |