- -

Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces

Mostrar el registro completo del ítem

Bartwal, A.; Rawat, S.; Beg, I. (2023). Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces. Applied General Topology. 24(1):101-113. https://doi.org/10.4995/agt.2023.18029

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193021

Ficheros en el ítem

Metadatos del ítem

Título: Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces
Autor: Bartwal, Ayush Rawat, Shivam Beg, Ismat
Fecha difusión:
Resumen:
[EN] We introduce the concept of q-ordered proximal nonunique contraction for the non self mappings and then obtain some proximity point results for these mappings. We also furnish examples to support our claims.
Palabras clave: Best proximity point , Proximal comparable , Noncommutative Banach space , Nonunique contraction
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.18029
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.18029
Tipo: Artículo

References

S. Aleksić, Z. Kadelburg, Z.D. Mitrović and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93-121.

I. Altun, B. Damnjanovic and D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23, no. 3 (2010), 310-316. https://doi.org/10.1016/j.aml.2009.09.016

I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numer. Funct. Anal. Optim. 42, no. 8 (2021), 935-954. https://doi.org/10.1080/01630563.2021.1933526 [+]
S. Aleksić, Z. Kadelburg, Z.D. Mitrović and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93-121.

I. Altun, B. Damnjanovic and D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23, no. 3 (2010), 310-316. https://doi.org/10.1016/j.aml.2009.09.016

I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numer. Funct. Anal. Optim. 42, no. 8 (2021), 935-954. https://doi.org/10.1080/01630563.2021.1933526

I. Altun, M. Aslantas and H. Sahin, Best proximity point results for p-proximal contractions, Acta. Math. Hung. 162, no. 2 (2020), 393-402. https://doi.org/10.1007/s10474-020-01036-3

M. Aslantas, H. Sahin and I. Altun, Best proximity point theorems for cyclic p-contractions with some consequences and applications, Nonlinear Anal.: Model. Control 26, no. 1 (2021), 113-129. https://doi.org/10.15388/namc.2021.26.21415

A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 3, no. 2 (2009), 236-241. https://doi.org/10.2298/AADM0902236A

A. Azam, I. Beg and M. Arshad, Fixed point in topological vector space valued cone metric spaces, Fixed Point Theory Appl. 2010, Article ID 604084. https://doi.org/10.1155/2010/604084

A. Azam and I. Beg, Kannan type mapping in TVS-valued cone metric spaces and their application to Urysohn integral equations, Sarajevo J. Math. 9, no. 22 (2013), 243-255. https://doi.org/10.5644/SJM.09.2.09

S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3, no. 1 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181

S. S. Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim. 31, no. 5 (2010), 569-576. https://doi.org/10.1080/01630563.2010.485713

S. S. Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl. 151, no. 1 (2011), 210-216. https://doi.org/10.1007/s10957-011-9869-4

S. S. Basha and P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math. 63 (1997), 289-300.

S. S. Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103, no. 1 (2000), 119-129. https://doi.org/10.1006/jath.1999.3415

I. Beg, A. Bartwal, S. Rawat and R. C. Dimri, Best proximity points in noncommutative Banach spaces, Comp. Appl. Math. 41 (2022), Paper no. 41. https://doi.org/10.1007/s40314-021-01741-x

Y. J. Cho, R. Saadati and S .H. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comp. Math. Appl. 61, no. 4 (2011), 1254-1260. https://doi.org/10.1016/j.camwa.2011.01.004

K. J. Chung, Nonlinear contractions in abstract spaces, Kodai Math. J. 4, no. 2 (1981), 288-292. https://doi.org/10.2996/kmj/1138036375

K. J. Chung, Remarks on nonlinear contractions, Pac. J. Math. 101, no. 1 (1982), 41-48. https://doi.org/10.2140/pjm.1982.101.41

L. B. Ćirić, On some maps with a nonunique fixed point, Publ. Inst. Math. 17, no. 31 (1974), 52-58.

W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. Theory Methods Appl. 72, no. 5 (2010), 2259-2261. https://doi.org/10.1016/j.na.2009.10.026

W. S. Du, New cone fixed point theorems for nonlinear multivalued maps with their applications, Appl. Math. Lett. 24, no. 2 (2011), 172-178. https://doi.org/10.1016/j.aml.2010.08.040

A. A. Eldered and P. Veeramani, Existence and convergence for best proximity points, J. Math. Anal. Appl. 323, no. 2 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081

N. Fabiano, Z. Kadelburg, N. Mirkow and S. N. Radenovic, Solving fractional differential equations using fixed point results in generalized metric spaces of Perov's type, TWMS J. App. Eng. Math., to appear.

L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 33, no. 2 (2007), 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087

S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: a survey, Nonlinear Anal. Theory Methods Appl. 74, no. 7 (2011), 2591-2601. https://doi.org/10.1016/j.na.2010.12.014

Z. Kadelburg, M. Pavlović and S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comp. Math. Appl. 59, no. 9 (2010), 3148-3159. https://doi.org/10.1016/j.camwa.2010.02.039

D. R. Kurepa, Tableaux ramifiés d'ensembles. Espaces pseudo-distanciés, C. R. Math. Acad. Sci. Paris 198 (1934), 1563-1565.

P. D. Proinov, A unified theory of cone metric spaces and its applications to the fixed point theory, Fixed Point Theory Appl. 2013, no. 1 (2013), 1-38. https://doi.org/10.1186/1687-1812-2013-103

V. S. Raj, Best proximity point theorems for nonself mappings, Fixed Point Theory 14, no. 2 (2013), 447-454.

S. Rawat, S. Kukreti and R. C. Dimri, Fixed point results for enriched ordered contractions in noncommutative Banach spaces, J. Anal. 30 (2022), 1555-1566. https://doi.org/10.1007/s41478-022-00418-w

H. Sahin, M. Aslantas and I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl. 22, no. 1 (2020), 1-13. https://doi.org/10.1007/s11784-019-0740-9

H. Sahin, M. Aslantas and I. Altun, Best proximity and best periodic points for proximal nonunique contractions, J. Fixed Point Theory Appl. 23, no. 4 (2021), Paper No. 55. https://doi.org/10.1007/s11784-021-00889-7

A. Sultana and V. Vetrivel, On the existence of best proximity points for generalized contractions, Appl. Gen. Topol. 15, no. 1 (2014), 55-63. https://doi.org/10.4995/agt.2014.2221

Q. Xin and L. Jiang, Fixed-point theorems for mappings satisfying the ordered contractive condition on noncommutative spaces, Fixed Point Theory Appl. 2014, 2014:30. https://doi.org/10.1186/1687-1812-2014-30

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem