Mostrar el registro sencillo del ítem
dc.contributor.author | Goswami, Amartya | es_ES |
dc.date.accessioned | 2023-05-02T06:35:57Z | |
dc.date.available | 2023-05-02T06:35:57Z | |
dc.date.issued | 2023-04-05 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/193022 | |
dc.description.abstract | [EN] Since Hochster's work, spectral spaces have attracted increasing interest. Through this note we give a new self-contained and constructible topology-independent proof of the fact that the set of proper ideals of a ring endowed with coarse lower topology is a spectral space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ideals | es_ES |
dc.subject | Closed subbase | es_ES |
dc.subject | Irreducibility | es_ES |
dc.subject | Sobriety | es_ES |
dc.subject | Spectral space | es_ES |
dc.title | Proper spaces are spectral | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.17800 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Goswami, A. (2023). Proper spaces are spectral. Applied General Topology. 24(1):95-99. https://doi.org/10.4995/agt.2023.17800 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.17800 | es_ES |
dc.description.upvformatpinicio | 95 | es_ES |
dc.description.upvformatpfin | 99 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17800 | es_ES |
dc.description.references | A. Abbasi and D. Hassanzadeh-Lelekaami, Modules and spectral spaces, Comm. Algebra 40, no. 11 (2012), 4111-4129. https://doi.org/10.1080/00927872.2011.602273 | es_ES |
dc.description.references | N. Bezhanishvili and W. H. Holliday, Choice-free Stone duality, J. Symb. Log. 85 (2020), 109-148. https://doi.org/10.1017/jsl.2019.11 | es_ES |
dc.description.references | M. Dickmann, N. Schwartz, and M. Tressel, Spectral spaces, Cambridge Univ. Press, 2019. https://doi.org/10.1017/9781316543870 | es_ES |
dc.description.references | D. E. Dobbs, R. Fedder, and M. Fontana, Abstract Riemann surfaces of integral domains and spectral spaces, Annali Mat. Pura Appl. 148 (1987), 101-115. https://doi.org/10.1007/BF01774285 | es_ES |
dc.description.references | D. E. Dobbs and M. Fontana, Kronecker function rings and abstract Riemann surfaces, J. Algebra 99 (1986), 263-274. https://doi.org/10.1016/0021-8693(86)90067-0 | es_ES |
dc.description.references | T. Dube and A. Goswami, Ideal spaces: an extension of structure spaces of a ring, J. Algebra Appl., to appear. | es_ES |
dc.description.references | C. A. Finocchiaro, M. Fontana, and D. Spirito, A topological version of Hilbert's Nullstellensatz, J. Algebra 461 (2016), 25-41. https://doi.org/10.1016/j.jalgebra.2016.04.020 | es_ES |
dc.description.references | C. A. Finocchiaro, M. Fontana, and D. Spirito, New distinguished classes of spectral spaces: a survey, in: Multiplicative ideal theory and factorization theory, Springer (2016), 117-143. https://doi.org/10.1007/978-3-319-38855-7_5 | es_ES |
dc.description.references | C. Finocchiaro and D. Spirito, Suprema in spectral spaces and the constructible closure, New York J. Math. 26 (2020), 1064-1092. | es_ES |
dc.description.references | D. Harris, Universal quasi-compact T_1 spaces, General Topology and Appl. 3 (1973), 291-318. https://doi.org/10.1016/0016-660X(73)90018-4 | es_ES |
dc.description.references | M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X | es_ES |
dc.description.references | J. McDonald and K. Yamamoto, Choice-free duality for orthocomplemented lattices by means of spectral spaces, Algebra Universalis 83 (2022), 37. https://doi.org/10.1007/s00012-022-00789-y | es_ES |
dc.description.references | H. A. Priestley, Intrinsic spectral topologies, in: Papers on general topology and applications (Flushing, NY, 1992), 728, 78-95, New York Acad. Sci., New York, 1994. https://doi.org/10.1111/j.1749-6632.1994.tb44135.x | es_ES |
dc.description.references | S. Ray, Closure operations, continuous valuations on monoids and spectral spaces, J. Algebra Appl. 19, no. 1 (2020), 2050006. https://doi.org/10.1142/S0219498820500061 | es_ES |