- -

Proper spaces are spectral

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Proper spaces are spectral

Mostrar el registro completo del ítem

Goswami, A. (2023). Proper spaces are spectral. Applied General Topology. 24(1):95-99. https://doi.org/10.4995/agt.2023.17800

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193022

Ficheros en el ítem

Metadatos del ítem

Título: Proper spaces are spectral
Autor: Goswami, Amartya
Fecha difusión:
Resumen:
[EN] Since Hochster's work, spectral spaces have attracted increasing interest. Through this note we give a new self-contained and constructible topology-independent proof of the fact that the set of proper ideals of a ...[+]
Palabras clave: Ideals , Closed subbase , Irreducibility , Sobriety , Spectral space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.17800
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.17800
Tipo: Artículo

References

A. Abbasi and D. Hassanzadeh-Lelekaami, Modules and spectral spaces, Comm. Algebra 40, no. 11 (2012), 4111-4129. https://doi.org/10.1080/00927872.2011.602273

N. Bezhanishvili and W. H. Holliday, Choice-free Stone duality, J. Symb. Log. 85 (2020), 109-148. https://doi.org/10.1017/jsl.2019.11

M. Dickmann, N. Schwartz, and M. Tressel, Spectral spaces, Cambridge Univ. Press, 2019. https://doi.org/10.1017/9781316543870 [+]
A. Abbasi and D. Hassanzadeh-Lelekaami, Modules and spectral spaces, Comm. Algebra 40, no. 11 (2012), 4111-4129. https://doi.org/10.1080/00927872.2011.602273

N. Bezhanishvili and W. H. Holliday, Choice-free Stone duality, J. Symb. Log. 85 (2020), 109-148. https://doi.org/10.1017/jsl.2019.11

M. Dickmann, N. Schwartz, and M. Tressel, Spectral spaces, Cambridge Univ. Press, 2019. https://doi.org/10.1017/9781316543870

D. E. Dobbs, R. Fedder, and M. Fontana, Abstract Riemann surfaces of integral domains and spectral spaces, Annali Mat. Pura Appl. 148 (1987), 101-115. https://doi.org/10.1007/BF01774285

D. E. Dobbs and M. Fontana, Kronecker function rings and abstract Riemann surfaces, J. Algebra 99 (1986), 263-274. https://doi.org/10.1016/0021-8693(86)90067-0

T. Dube and A. Goswami, Ideal spaces: an extension of structure spaces of a ring, J. Algebra Appl., to appear.

C. A. Finocchiaro, M. Fontana, and D. Spirito, A topological version of Hilbert's Nullstellensatz, J. Algebra 461 (2016), 25-41. https://doi.org/10.1016/j.jalgebra.2016.04.020

C. A. Finocchiaro, M. Fontana, and D. Spirito, New distinguished classes of spectral spaces: a survey, in: Multiplicative ideal theory and factorization theory, Springer (2016), 117-143. https://doi.org/10.1007/978-3-319-38855-7_5

C. Finocchiaro and D. Spirito, Suprema in spectral spaces and the constructible closure, New York J. Math. 26 (2020), 1064-1092.

D. Harris, Universal quasi-compact T_1 spaces, General Topology and Appl. 3 (1973), 291-318. https://doi.org/10.1016/0016-660X(73)90018-4

M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X

J. McDonald and K. Yamamoto, Choice-free duality for orthocomplemented lattices by means of spectral spaces, Algebra Universalis 83 (2022), 37. https://doi.org/10.1007/s00012-022-00789-y

H. A. Priestley, Intrinsic spectral topologies, in: Papers on general topology and applications (Flushing, NY, 1992), 728, 78-95, New York Acad. Sci., New York, 1994. https://doi.org/10.1111/j.1749-6632.1994.tb44135.x

S. Ray, Closure operations, continuous valuations on monoids and spectral spaces, J. Algebra Appl. 19, no. 1 (2020), 2050006. https://doi.org/10.1142/S0219498820500061

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem